Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering Science and Materials

Low Velocity Impact Of Hybrid Stacked Steel Plates, H. Hadidi, R. Q. Feng, M. P. Sealy Jan 2020

Low Velocity Impact Of Hybrid Stacked Steel Plates, H. Hadidi, R. Q. Feng, M. P. Sealy

Department of Mechanical and Materials Engineering: Faculty Publications

Designing and manufacturing high-strength, low-weight parts with enhanced impact resistance is highly sought after in the transportation industry. The most common methods to improve strength-to-weight ratios of impact targets is a composite material composition or a favorable geometric design. An alternative method to improve impact performance is functionally gradient mechanical properties in a single material by hybrid additive stacking. In this study, low-velocity impact tests were conducted on hybrid stacked 1070 steel plates where individual layers were subjected to shot peening (SP) to functionally grade mechanical properties. Hybrid additive stacking refers to secondarily processing preferential layers within a stacked build …


Impact Damage On A Thin Glass Plate With A Thin Polycarbonate Backing, Wenke Hu, Yenan Wang, Jian Yu, Chian-Fong Yen, Florin Bobaru Nov 2013

Impact Damage On A Thin Glass Plate With A Thin Polycarbonate Backing, Wenke Hu, Yenan Wang, Jian Yu, Chian-Fong Yen, Florin Bobaru

Florin Bobaru Ph.D.

We present experimental and computational results for the impact of a spherical projectile on a thin glass plate with a thin polycarbonate backing plate, restrained in a metal frame, or in the absence of the frame. We analyze the dependence of the damage patterns in the glass plate on the increasing impact velocities, from 61 m/s to 200 m/s. Experimental results are compared with those from peridynamic simulations of a simplified model. The main fracture patterns observed experimentally are captured by the peridynamic model for each of the three projectile velocities tested. More accurate implementation of the actual boundary conditions …


Sensitivity Analysis Of The Johnson-Cook Plasticity Model For Hypervelocity Impacts: A Hydro-Code Study, Carlos David Castellanos Jan 2010

Sensitivity Analysis Of The Johnson-Cook Plasticity Model For Hypervelocity Impacts: A Hydro-Code Study, Carlos David Castellanos

Open Access Theses & Dissertations

Computer simulations have been in use for decades in the modeling of hypervelocity impacts and general large deformation problems. Several computer codes have been developed to simulate this type of problems under a variety of geometric configurations and for any number of materials. These codes make use of several constitutive material models to simulate the response of the material under a variety of thermo-mechanical conditions. The Johnson-Cook constitutive model is widely used in the simulation hypervelocity impacts for the simulation of crater formation and even perforation of target structures. This thesis presents the results of a sensitivity study of this …


Multiscale Modeling Of Impact On Heterogeneous Viscoelastic Solids With Evolving Microcracks, Flavio V. Souza Apr 2009

Multiscale Modeling Of Impact On Heterogeneous Viscoelastic Solids With Evolving Microcracks, Flavio V. Souza

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Multiscale computational techniques play a major role in solving problems related to viscoelastic composite materials due to the complexities inherent to these materials. In the present work, a numerical procedure for multiscale modeling of impact on heterogeneous viscoelastic solids containing evolving microcracks is proposed in which the (global scale) homogenized viscoelastic incremental constitutive equations have the same form as the local scale viscoelastic incremental constitutive equations, but the homogenized tangent constitutive tensor and the homogenized incremental history dependent stress tensor depend on the amount of damage accumulated at the local scale. Furthermore, the developed technique allows the computation of the …


The Effect Of Silicon Content On Impact Toughness Of T91 Grade Steels, Ajit K. Roy, Pankaj Kumar, Debajyoti Maitra Mar 2009

The Effect Of Silicon Content On Impact Toughness Of T91 Grade Steels, Ajit K. Roy, Pankaj Kumar, Debajyoti Maitra

Mechanical Engineering Faculty Research

The impact resistance of silicon (Si)-containing modified 9Cr-1Mo steels has been investigated within a temperature regime of -40 to 440°C using the Charpy method. The results indicate that the energies absorbed in fracturing the tested specimens were substantially lower at temperatures of -40, 25, and 75°C compared to those at elevated temperatures. Lower impact energies and higher ductile-to-brittle-transition-temperatures (DBTTs) were observed with the steels containing 1.5 and 1.9 wt.% Si. The steels containing higher Si levels exhibited both ductile and brittle failures at elevated temperatures. However, at lower temperatures, brittle failures characterized by cleavage and intergranular cracking were observed for …