Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

University of Texas at El Paso

Hafnia

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering Science and Materials

Tungsten Doping Induced Superior Mechanical Properties Of Hafnium Oxide For Energy Applications, Ann Marie Uribe Jan 2018

Tungsten Doping Induced Superior Mechanical Properties Of Hafnium Oxide For Energy Applications, Ann Marie Uribe

Open Access Theses & Dissertations

Hafnium oxide, or hafnia, is a high temperature refractory material with good electrical, chemical, optical, and thermodynamic properties. The effects of dopants have been widely studied, especially after the discovery of ferroelectricity induced in hafnia thin films. While attractive and used in the opto-electronic, memory devices, and semiconductor industries, there is a lack in the literature on enhancing the mechanical properties of hafnium oxide, specifically through doping it with tungsten, another material of interest particularly for future high temperature device applications. Thus, this work aimed to grow hafnia thin films doped with varying amounts of tungsten. The samples were grown …


Gadolinia Doped Hafnia (Gd2o3- Hfo2) Thermal Barrier Coatings For Gas Turbine Applications, Satya Kiran Gullapalli Jan 2014

Gadolinia Doped Hafnia (Gd2o3- Hfo2) Thermal Barrier Coatings For Gas Turbine Applications, Satya Kiran Gullapalli

Open Access Theses & Dissertations

Thermal efficiency of the gas turbines is influenced by the operating temperature of the hot gas path components. The material used for the hot gas path components can only withstand temperature up to a certain limit. Thermal barrier coatings (TBC) provide the additional thermal protection for these components and help the gas turbine achieve higher firing temperatures. Traditionally available yttria stabilized zirconia (YSZ) TBCs have a limitation up to 1200 C due to their phase transformation. The present work focuses on gadolinia based hafnia (GSH) TBCs to study their potential to replace the YSZ coatings. Different compositions of gadolinia doped …