Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

University of Texas at El Paso

Yttria

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Engineering Science and Materials

Yttria Rich Tbcs As Candidates For Cmas Resistant Top Coats, Juan Jose Gomez Jan 2016

Yttria Rich Tbcs As Candidates For Cmas Resistant Top Coats, Juan Jose Gomez

Open Access Theses & Dissertations

State of the art thermal barrier coatings (TBC) commonly made of 7-8 wt. % yttria stabilized zirconia (7YSZ) are used in modern gas turbines to generate a thermal protection to the underlying super alloy components. TBCs allow higher operating temperatures for hot gas path components, thus, generating higher engine efficiency. The infiltration of molten glassy mineral deposits composed of CaO-MgO-Al2O3-SiO2 (CMAS) represents one of the major threats in reducing performance and service life in aero and land based gas turbine engines. The CMAS deposits are ingested into the engine carried commonly in sand, runways debris, fly ash and volcanic ash. …


Crystal Structure, Phase, And Optical Properties Of Yttrium-Doped Hafnium Oxide Nanocrystalline Thin Films, Alejandro Ortega Jan 2013

Crystal Structure, Phase, And Optical Properties Of Yttrium-Doped Hafnium Oxide Nanocrystalline Thin Films, Alejandro Ortega

Open Access Theses & Dissertations

Yttrium-doped hafnium oxide (YDH) nanocrystalline films were produced by sputter-deposition at various substrate times and temperatures, to produce YDH films in a wide range of thicknesses, dYDH∼25 to 1100 nm. The deposition was made onto optical grade quartz and sapphire substrates. Samples deposited on sapphire were subject to post-deposition annealing (PDA) at various times (3-24 hr) and temperatures (1100 - 1500 °C). The effect of d[special characters omitted]YDH on the crystal structure, surface/interface morphology and optical properties of YDH films was investigated. X-ray diffraction analyses revealed the formation of monoclinic phase for relatively thin films (<150nm). The evolution towards stabilized cubic phase with increasing dYDH [special characters omitted]is observed. The scanning electron microscopy results indicate the dense, columnar structure of YDH films as a function of dYDH. Spectrophotometry analyses indicate that the grown YDH films are transparent and exhibit interference fringes. The band gap was found to be ∼ 5.60 eV for monoclinic YDH films while distinct separation and an increase in band gap to 6.03 eV is evident with increasing dYDH and formation cubic YDH films. The PDA films band gaps were found to be between 5.31 and 5.72 eV, all of which exhibit secondary gaps. A correlation between growth conditions, annealing, phase evolution, and optical properties of the YDH nanocrystalline thin films is established.


Hafnia-Based Nanostructured Thermal Barrier Coatings For Next Generation Gas Turbine Technology, Mohammed Noor-A-Alam Jan 2012

Hafnia-Based Nanostructured Thermal Barrier Coatings For Next Generation Gas Turbine Technology, Mohammed Noor-A-Alam

Open Access Theses & Dissertations

Extensive efforts have been directed in the last several decades towards improving thermodynamic efficiency of industrial gas turbines for power generation plants. The central theme of the efforts is to increase the turbine operating temperature and, thus, allowing higher efficiency. Thermal barrier coatings (TBC) constitute an advanced technology to protect the metallic surface from high temperature exposure for long time operation. The TBCs protect the gas turbine components from high temperature and allows further increase in engine operating temperature which subsequently increases the efficiency of the gas turbine power plant. However, the current TBC materials are capable of allowing the …