Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Engineering Science and Materials

Combustion Synthesis Of Molybdenum Silicides And Borosilicides For Ultrahigh-Temperature Structural Applications, Mohammad Shafiul Alam Jan 2014

Combustion Synthesis Of Molybdenum Silicides And Borosilicides For Ultrahigh-Temperature Structural Applications, Mohammad Shafiul Alam

Open Access Theses & Dissertations

Molybdenum silicides and borosilicides are promising structural materials for gas-turbine power plants. A major challenge, however, is to simultaneously achieve high oxidation resistance and acceptable mechanical properties at high temperatures. For example, molybdenum disilicide (MoSi2) has excellent oxidation resistance and poor mechanical properties, while Mo-rich silicides such as Mo5Si3 (called T1) have much better mechanical properties but poor oxidation resistance. One approach is based on the fabrication of MoSi2−T1 composites that combine high oxidation resistance of MoSi2 and good mechanical properties of T1. Another approach involves the …


Characterization Of W-Ti-O Thin Films For Application In Photovoltaics, Amanda Patricia Christmas Jan 2014

Characterization Of W-Ti-O Thin Films For Application In Photovoltaics, Amanda Patricia Christmas

Open Access Theses & Dissertations

Photovoltaic (PV) devices consist of the conversion of light energy into electricity. Nearly all PV technologies employ transparent conducting oxides (TCO) as an integral part of the de-vice structure so that the light can reach the semiconductor. The predominant transparent conducting oxide (TCO) that is currently being used in industry is indium tin oxide (ITO). However, Indium (In) is high in cost and becoming scarce in the world. This work is focused towards Titanium doped Tungsten oxide (WO3) for TCO application. The ultimate goal is making novel, cheaper, and efficient TCOs based on W-Ti-O films. Titanium will enhance the conductivity …


Optimization Of Uv-Led Curable Printing Material For Applications In Direct Writing Systems: Inkjet, Reverse Offset, And Micro Dispensing Gpd, Ada Judith Ortega Varela Jan 2014

Optimization Of Uv-Led Curable Printing Material For Applications In Direct Writing Systems: Inkjet, Reverse Offset, And Micro Dispensing Gpd, Ada Judith Ortega Varela

Open Access Theses & Dissertations

The quality of a product fabricated by direct writing methods will depend greatly on the properties of the printing material and its compatibility with the printing process. Although multiple advances in developing printing inks and pastes with novel properties are being made, the potential those can bring to electronics is hindered by their stability and performance during the printing process. In this study a UV-LED curable acrylic material was used to test the optimization of inks and pastes for three of the most common direct writing systems: Piezo-type Inkjet, Reverse Offset Roll to Plate, and Micro Deposition. The viscosity of …


Alkali Promoted Molybdenum (Iv) Sulfide Based Catalysts, Development And Characterization For Alcohol Synthesis From Carbon Monoxide And Hydrogen, Belinda Delilah Molina Jan 2014

Alkali Promoted Molybdenum (Iv) Sulfide Based Catalysts, Development And Characterization For Alcohol Synthesis From Carbon Monoxide And Hydrogen, Belinda Delilah Molina

Open Access Theses & Dissertations

For more than a century transition metal sulfides (TMS) have been the anchor of hydro-processing fuels and upgrading bitumen and coal in refineries worldwide. As oil supplies dwindle and environmental laws become more stringent, there is a greater need for cleaner alternative fuels and/or synthetic fuels. The depletion of oil reserves and a rapidly increasing energy demand worldwide, together with the interest to reduce dependence on foreign oil makes alcohol production for fuels and chemicals via the Fischer Tropsch synthesis (FTS) very attractive. The original Fischer-Tropsch (FT) reaction is the heart of all gas-to-liquid technologies; it creates higher alcohols and …


Hydrogen Generation From Ammonia Borane And Water Through The Combustion Reactions With Mechanically Alloyed Al/Mg Powder, Daniel Rodriguez Jan 2014

Hydrogen Generation From Ammonia Borane And Water Through The Combustion Reactions With Mechanically Alloyed Al/Mg Powder, Daniel Rodriguez

Open Access Theses & Dissertations

Finding and developing a safe and effective method for hydrogen storage is integral to its use as an alternative source of energy. The goal of the studies described in this Thesis was to investigate the feasibility of developing combustible hydrogen-generating compositions based on ammonia borane and novel energetic materials such as nanocomposite and mechanically alloyed reactive materials, recently obtained by Prof. Edward Dreizin's team at the New Jersey Institute of Technology (NJIT). Such compositions could be stored for long time and release hydrogen on demand, upon ignition. The first phase of the research included thermodynamic calculations for combustion of ammonia …


A Study Of Ti-Doped Wo3 Thin Films Using Comparative Theoretical And Experimental Approach, Aurelio Paez Jan 2014

A Study Of Ti-Doped Wo3 Thin Films Using Comparative Theoretical And Experimental Approach, Aurelio Paez

Open Access Theses & Dissertations

Metal oxides like Tungsten Oxide (WO3) are well documented and characterized in the literature, with uses in darkening windows and mirrors, flat computer displays, solar panel cooling, and sensors (of interest in this study). Ti doping of WO3 is less documented and the focus of this study. Sample thin films of pure WO3 and varyingly Ti doped WO3 were prepared using Radio Frequency magnetron sputtering (RF) (13.56 MHz) to grow thin films on a silicon substrate. This study aims to compare multiple Ti doping percentages in WO3 theoretically and then compare with experimental data taken from thin films of various …


Design Of Three Different Particle Size Distributions In Silver Paste Through Computer Simulation For Higher Electrical Conductivity, Kyungdeok Jang Jan 2014

Design Of Three Different Particle Size Distributions In Silver Paste Through Computer Simulation For Higher Electrical Conductivity, Kyungdeok Jang

Open Access Theses & Dissertations

In the field of printed electronics technology, researchers have tried to print highly conductive electrodes with fine width and height in order to manufacture high performance devices.

The purpose of this research is to print particle monolayer silver patterns which have better electrical conductivity than existing ones. The key idea of this experiment is to analyze silver inks with different sized particles. Let us consider a particle monolayer pattern printed with silver ink consisting of mono-sized particles. Inside of the pattern, there are some vacant spaces between the particles, which can lead to low electrical conductivity and discontinuity of the …


Effect Of Rhenium On Short Term Oxidation Of Niobium Based Alloys For High Temperature Applications, Ruth M. Sierra Jan 2014

Effect Of Rhenium On Short Term Oxidation Of Niobium Based Alloys For High Temperature Applications, Ruth M. Sierra

Open Access Theses & Dissertations

The effect of adding Re to Nb-based alloys and is intended to analyze in depth the microstructures of Nb based alloys with Re, Si and Cr additions, in atomic percentages. The binary alloys (Nb-5Re, Nb-5Si and Nb-5Cr) reveal the formation of a single phase, NbSS, NbSS+ Nb3Si and NbSS+NbCr2 respectively. The formation of the single phase was confirmed by TEM studies for the Nb-5Re alloy. Addition of Re to form ternary alloys, has helped in the formation of Nb5Si3 and (Nb, Re) Cr2, in Nb-5Re- 5Si and Nb-5Re-5Cr respectively. Quaternary alloy Nb-5Re-5Si-5Cr has Nb5Si3, NbCr2 and NbSS. The oxidation behavior …


Characterization Of High-Purity Niobium Structures Fabricated Using The Electron Beam Melting Process, Cesar Adrian Terrazas Jan 2014

Characterization Of High-Purity Niobium Structures Fabricated Using The Electron Beam Melting Process, Cesar Adrian Terrazas

Open Access Theses & Dissertations

Additive Manufacturing (AM) refers to the varied set of technologies utilized for the fabrication of complex 3D components from digital data in a layer-by-layer fashion. The use of these technologies promises to revolutionize the manufacturing industry. The electron beam melting (EBM) process has been utilized for the fabrication of fully dense near-net-shape components from various metallic materials. This process, catalogued as a powder bed fusion technology, consists of the deposition of thin layers (50 - 120µm) of metallic powder particles which are fused by the use of a high energy electron beam and has been commercialized by Swedish company Arcam …


Nanometric Structure-Property Relationship In Hafnium Oxide Thin Films Made By Sputter-Deposition, Mirella Vargas Jan 2014

Nanometric Structure-Property Relationship In Hafnium Oxide Thin Films Made By Sputter-Deposition, Mirella Vargas

Open Access Theses & Dissertations

Hafnium oxide (HfO2) is technologically an important material, which exhibits a unique set of properties such as a high dielectric constant (k~25) and wide band gap (~5.7 eV) which make this material attractive in the fields of microelectronics and optoelectronics. HfO2 has become the leading candidate to replace SiO2 dielectrics in gate oxides due to a higher permittivity and reportedly lower electron tunneling effects. HfO2 exhibits various polymorphs; the thermodynamic stability and phase existence depends on the temperature and pressure conditions. In addition, the controlled growth and manipulation of specific HfO2 crystal structures at the nanoscale dimensions is the driving …


Fabrication Of A Nickel-Based Superalloy In Electron Beam Melting And Process Improvements Using Thermal Feedback From A Multi-Wavelength Pyrometer, Jonathan Minjares Jan 2014

Fabrication Of A Nickel-Based Superalloy In Electron Beam Melting And Process Improvements Using Thermal Feedback From A Multi-Wavelength Pyrometer, Jonathan Minjares

Open Access Theses & Dissertations

The focus of this research was to fabricate parts composed of a nickel-based superalloy containing high levels of aluminum and titanium (NSAT) by using electron beam melting (EBM) additive manufacturing (AM) technology and utilizing thermal feedback from a multi-wavelength pyrometer to perform process improvements leading to near defect-free parts. EBM is an AM technology that utilizes metal powder to fabricate parts in layer-by-layer manner. A multi-wavelength pyrometer was implemented in an Arcam S12 (Arcam AB, Sweden) EBM system to observe and record surface temperatures throughout fabrication. Temperature data from the EBM system and the multi-wavelength pyrometer were graphed using MATLAB …


Growth And Analysis Of Micro And Nano Cdte Arrays For Solar Cell Applications, Brandon Adrian Aguirre Jan 2014

Growth And Analysis Of Micro And Nano Cdte Arrays For Solar Cell Applications, Brandon Adrian Aguirre

Open Access Theses & Dissertations

CdTe is an excellent material for infrared detectors and photovoltaic applications. The efficiency of CdTe/CdS solar cells has increased very rapidly in the last 3 years to ~20% but is still below the maximum theoretical value of 30%. Although the short-circuit current density is close to its maximum of 30 mA/cm2, the open circuit voltage has potential to be increased further to over 1 Volt. The main limitation that prevents further increase in the open-circuit voltage and therefore efficiency is the high defect density in the CdTe absorber layer. Reducing the defect density will increase the open-circuit voltage above 1 …


3d Printed Electromagnetic Transmission And Electronic Structures Fabricated On A Single Platform Using Advanced Process Integration Techniques, Paul I. Deffenbaugh Jan 2014

3d Printed Electromagnetic Transmission And Electronic Structures Fabricated On A Single Platform Using Advanced Process Integration Techniques, Paul I. Deffenbaugh

Open Access Theses & Dissertations

3D printing has garnered immense attention from many fields including in-office rapid prototyping of mechanical parts, outer-space satellite replication, garage functional firearm manufacture, and NASA rocket engine component fabrication. 3D printing allows increased design flexibility in the fabrication of electronics, microwave circuits and wireless antennas and has reached a level of maturity which allows functional parts to be printed. Much more work is necessary in order to perfect the processes of 3D printed electronics especially in the area of automation. Chapter 1 shows several finished prototypes of 3D printed electronics as well as newly developed techniques in fabrication. Little is …


Gadolinia Doped Hafnia (Gd2o3- Hfo2) Thermal Barrier Coatings For Gas Turbine Applications, Satya Kiran Gullapalli Jan 2014

Gadolinia Doped Hafnia (Gd2o3- Hfo2) Thermal Barrier Coatings For Gas Turbine Applications, Satya Kiran Gullapalli

Open Access Theses & Dissertations

Thermal efficiency of the gas turbines is influenced by the operating temperature of the hot gas path components. The material used for the hot gas path components can only withstand temperature up to a certain limit. Thermal barrier coatings (TBC) provide the additional thermal protection for these components and help the gas turbine achieve higher firing temperatures. Traditionally available yttria stabilized zirconia (YSZ) TBCs have a limitation up to 1200 C due to their phase transformation. The present work focuses on gadolinia based hafnia (GSH) TBCs to study their potential to replace the YSZ coatings. Different compositions of gadolinia doped …


3d Printing Technology Using High Viscous Materials-Synthesis Of Functional Materials And Fabrication Of 3d Metal Structure, Seongik Hong Jan 2014

3d Printing Technology Using High Viscous Materials-Synthesis Of Functional Materials And Fabrication Of 3d Metal Structure, Seongik Hong

Open Access Theses & Dissertations

In the 3D printing technology, the research for using various materials has been performing. In this research work, 3D printable high viscous materials are suggested as one of the solutions for problems in the traditional 3D printing technology.

First, Cu-Ag coreshell was synthesized as a functional material. In terms of the reaction rate, reaction rate limiting step was defined as a fundamental research, and then prepared Cu-Ag coreshell was printed and analyzed. Second, the high viscous Cu paste was prepared and then metal 3D printed structure was fabricated by using new printing method.

In the synThesis of Cu-Ag coreshell, different …