Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Air Force Institute of Technology

Composite materials--Creep

Articles 1 - 3 of 3

Full-Text Articles in Engineering Science and Materials

Effects Of Environment On Creep Behavior Of Two Oxide-Oxide Ceramic Matrix Composites At 1200°C, Pavlos Koutsoukos Sep 2006

Effects Of Environment On Creep Behavior Of Two Oxide-Oxide Ceramic Matrix Composites At 1200°C, Pavlos Koutsoukos

Theses and Dissertations

Previous studies by the advisor and graduate students examined creep behavior of the Nextel720/Alumina CMC in air and in 100% steam environments at 1200 and 1330°C. Results showed that while this oxide/oxide system exhibits an exceptionally high fatigue limit at 1200°C it also experiences substantial strain accumulation under sustained loading conditions. Furthermore, these earlier investigations revealed a significant degrading effect of 100% steam environment on material performance under both static and cyclic loadings. The present effort will investigate creep rupture behavior of Nextel720/Alumina composite in the inert gas environment. In addition, creep rupture behavior of Nextel720/Aluminosilicate CMC will be investigated …


Effect Of Environment On Creep Behavior Of An Oxide/Oxide Cfcc With ±45° Fiber Orientation, Gregory T. Siegert Jun 2006

Effect Of Environment On Creep Behavior Of An Oxide/Oxide Cfcc With ±45° Fiber Orientation, Gregory T. Siegert

Theses and Dissertations

Aerospace applications require materials capable of maintaining superior mechanical properties while operating at high temperatures and oxidizing environments. Nextel™ 720/A (N720/A), an oxide/oxide ceramic matrix composite (CMC) with a porous alumina matrix was developed specifically to provide improved long-term properties and performance at 1200°C. This research evaluated the creep behavior of N720/A with a ±45° fiber orientation at 1200°C in: laboratory air, steam, and argon environments. Creep-rupture tests at the creep stress levels of: 45, 40, 35, and 15 MPa were conducted in each environment.
The ultimate tensile strength of N720/A with ±45° fiber orientation was 55 MPa, the elastic …


Characterization Of Compressive Creep Behavior Of Oxide/Oxide Composite With Monazite Coating At Elevated Temperature, Patrick R. Jackson Mar 2006

Characterization Of Compressive Creep Behavior Of Oxide/Oxide Composite With Monazite Coating At Elevated Temperature, Patrick R. Jackson

Theses and Dissertations

The compressive creep behavior of a N610/monazite/alumina composite was investigated in this work. The composite consists of a porous alumina matrix reinforced with NextelTM610 fibers coated with monazite in a symmetric cross-ply (0°/90°/0°/90°)s orientation. Compressive stress-strain behavior was investigated as well. The addition of monazite coating resulted in ~ 35% loss in compressive strength at 900°C and in ~45% loss in compressive strength at 1100°C. Compressive creep behavior was examined at 900 and 1100°C for creep stresses ranging from 50 to 95 MPa. Primary and secondary creep regimes were observed at both temperatures. Minimum creep rate was reached in all …