Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Air Force Institute of Technology

Composite materials

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Engineering Science and Materials

Creep-Rupture And Fatigue Behaviors Of Notched Oxide/Oxide Ceramic Matrix Composite At Elevated Temperature, Mark A. Sullivan Mar 2006

Creep-Rupture And Fatigue Behaviors Of Notched Oxide/Oxide Ceramic Matrix Composite At Elevated Temperature, Mark A. Sullivan

Theses and Dissertations

Oxide/oxide composites are being considered for use in high temperature aerospace applications where their inherent resistance to oxidation provides for better long life properties at high temperature than most other ceramic matrix composites (CMCs). One promising oxide/oxide CMC is Nextel 720/A (N720/A) which uses an 8-harness satin weave (8HSW) of Nextel 720 fibers embedded in a porous alumina matrix. Possible aerospace applications for N720/A will likely require inserting holes into the material for mounting and cooling purposes. The notch characteristics must be understood to ensure designs using the material are sufficient for the desired application. This research effort examined the …


Mechanics Of A Functionally-Graded Titanium Matrix Composite, G. Brandt Miller Mar 2000

Mechanics Of A Functionally-Graded Titanium Matrix Composite, G. Brandt Miller

Theses and Dissertations

Functionally-graded Titanium Matrix Composites, (F/G TMCs) combine the ideal properties of titanium matrix composites with the more practical machining qualities of monolithic (unreinforced) alloy. This material shows great promise in application to aerospace structural components - even in parts whose design requirements have defied the use of composite materials in the past. Successful implementation of such a material would lead to enhanced aircraft performance. However, the basic properties of a functionally-graded titanium matrix composite need to be investigated. The composite/alloy transition region, or joint area, may be less strong than its constituents and therefore determine the overall performance of the …


Investigation Into The Behavior Of Geometrically Nonlinear Composite Arches, John C. Bailey Dec 1994

Investigation Into The Behavior Of Geometrically Nonlinear Composite Arches, John C. Bailey

Theses and Dissertations

This research modifies the existing finite element formulation of a potential energy based large deformation and moderate rotation theory. Hermitian shape functions replace the existing linear bending angle interpolations. Negligible differences between the two formulations indicate the underlying kinematics limit the accuracy, not the finite element interpolations. Using the new program, numerous nonlinear arch geometries are modeled to investigate the effects of arc length and thickness variations. Local and global snapping phenomena are captured as well as through the thickness shear driven nonlinearities.


Influence Of Embedded Optical Fibers On Compressive Strength Of Advanced Composites, Stefan B. Dosedel Dec 1993

Influence Of Embedded Optical Fibers On Compressive Strength Of Advanced Composites, Stefan B. Dosedel

Theses and Dissertations

This study investigated the effects of embedding optical fibers into advanced composite materials. This combination was meant to simulate 'smart structures' that have been shown to sense several different variables in the composite including strain, temperature, and damage. A laminate orientation taken from an existing aircraft structure was used to fabricate sixteen groups of specimens which were subjected to compression testing in an IITRI fixture to determine the ultimate compressive strength and modulus of elasticity. Ten of these groups were fabricated with optical fibers while the other six were control groups and contained no optical fibers. This study showed that …