Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

PDF

2015

Vanadium flow battery

Articles 1 - 2 of 2

Full-Text Articles in Engineering Science and Materials

Latest Progresses In Vanadium Flow Battery Technologies And Applications, Xiao-Li Wang, Yu Zhang, Hua-Min Zhang Oct 2015

Latest Progresses In Vanadium Flow Battery Technologies And Applications, Xiao-Li Wang, Yu Zhang, Hua-Min Zhang

Journal of Electrochemistry

With virtues of high safety, long cycle life, friend environment and state of charge easy monitoring, vanadium flow battery has become an effective technique for large scale energy storage. United States, Japan, Europe and other developed countries are actively promoting the developments of vanadium flow battery technology and related equipments. In this paper, the performance of containerized vanadium flow battery, which was newly developed by Rongke Power (RKP) and Dalian Institute of Chemical Physics, was introduced. The operation data of 5 MW/10 MWh vanadium flow battery energy storage station was displayed. Finally, it is pointed out that reducing the cost, …


Development Of Proton Conduction Membranes In Application Of Vanadium Flow Battery, Le-Tu Qingge, Wei-Nan Guo, Ping Liu, Bao-Guo Wang Oct 2015

Development Of Proton Conduction Membranes In Application Of Vanadium Flow Battery, Le-Tu Qingge, Wei-Nan Guo, Ping Liu, Bao-Guo Wang

Journal of Electrochemistry

The polymeric hydrophilic/hydrophobic interactions into membrane formation were introduced. A general and straightforward strategy for preparing membranes with nanometer-scale pores was suggested by utilization of hydrophilic/hydrophobic interactions to generate phase separation and removal of polyion aggregates through water immersion. Poly(vinylidene fluoride) (PVDF) and sodium allyl sulfonate (SAS) serve as the membrane material and pore-generator, respectively, resulting in chemically stable and oxidation-resistant membranes with various potential applications. Following the same procedure invented to produce the laboratory-scale membranes, the scale-up process to manufacture large-area membranes was completed. The obtained membrane exhibited the conductivity of 3.5×10-2 S•cm-1, thickness of 100 μm, …