Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

PDF

2015

Anode materials

Articles 1 - 2 of 2

Full-Text Articles in Engineering Science and Materials

Synthesis And Electrochemical Performance Of Mn3O4/Graphene Composites, Shan-Shan Yang, Qian Zhang, Xiong-Gui Lin, Ming-Sen Zheng, Quan-Feng Dong Aug 2015

Synthesis And Electrochemical Performance Of Mn3O4/Graphene Composites, Shan-Shan Yang, Qian Zhang, Xiong-Gui Lin, Ming-Sen Zheng, Quan-Feng Dong

Journal of Electrochemistry

The Mn3O4/Graphene composites were synthesized by hydrothermal method with the in-situ redox reaction of graphene oxide (GO) and manganese acetate (Mn(Ac)2). The phase structures and morphologies of the materials were characterized by XRD, SEM and TEM. The XPS and IR techniques were used for studying the residual function groups of reduced graphene oxide (RGO). The electrochemical performances of the hybrids were tested in a coin cell. Results showed that the composites prepared with the addition of ammonia water (RM-A) have better performance. The graphenes in RM-A were better-reduced and the Mn3O4 particles were much …


Nanosized Fe2O3 On Three Dimensional Hierarchical Porous Graphene-Like Matrices As High-Performance Anode Material For Lithium Ion Batteries, Qin-Wei Zhang, Yun-Yong Li, Pei-Kang Shen Feb 2015

Nanosized Fe2O3 On Three Dimensional Hierarchical Porous Graphene-Like Matrices As High-Performance Anode Material For Lithium Ion Batteries, Qin-Wei Zhang, Yun-Yong Li, Pei-Kang Shen

Journal of Electrochemistry

Ferric oxide (Fe2O3) as a promising anode material for lithium ion battery is due to its high theoretical capacity (1007 mAh·g-1), earth abundance and low cost. The nanosized Fe2O3 on the three dimensional hierarchical porous graphene-like network (denoted as Fe2O3-3D HPG) has been synthesized by homogeneous precipitation and heat treatment. The 3D HPG can provide a highly conductive structure in conjunction to support well contacted Fe2O3 nanoparticles, and effectively enhance the mechanical strength of the matrices during volume changes, as well as improve the …