Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 38

Full-Text Articles in Engineering Science and Materials

Failure Simulations At Multiple Length Scales In High Temperature Structural Alloys, Chao Pu Dec 2015

Failure Simulations At Multiple Length Scales In High Temperature Structural Alloys, Chao Pu

Doctoral Dissertations

A number of computational methodologies have been developed to investigate the deformation and damage mechanism of various structural materials at different length scale and under extreme loading conditions, and also to provide insights in the development of high-performance materials.

In microscopic material behavior and failure modes, polycrystalline metals of interest include heterogeneous deformation field due to crystalline anisotropy, inter/intra grain or phase and grain boundary interactions. Crystal plasticity model is utilized to simulate microstructure based polycrystalline materials, and micro-deformation information, such as lattice strain evolution, can be captured based on crystal plasticity finite element modeling (CPFEM) in ABAQUS. The comparison …


Finite Element Analysis (Fea) Study Of The Thermal Stress Concentrations In Planar-Type Sodium Sulfur (Nas) Secondary Batteries, Jeffrey P. Colker Dec 2015

Finite Element Analysis (Fea) Study Of The Thermal Stress Concentrations In Planar-Type Sodium Sulfur (Nas) Secondary Batteries, Jeffrey P. Colker

Theses and Dissertations

The importance of a reliable and safe way to store energy, and allow for on-demand usage, has led to much research in the field of secondary battery development. The thesis herein explores a technology that has shown promising results when implemented in large-scale energy grid applications. Though the technology has proven viable in both load-leveling on existing grids as well as serving to legitimize renewable energy sources, the development of such advanced battery systems is not without challenge. Sodium-sulfur (NaS) secondary cells have shown promising results when implemented in the aforementioned energy storage applications. One of the main drawbacks to …


Spare Parts On Demand Using Additive Manufacturing : A Simulation Model For Cost Evaluation., Stefan Jedeck Dec 2015

Spare Parts On Demand Using Additive Manufacturing : A Simulation Model For Cost Evaluation., Stefan Jedeck

Electronic Theses and Dissertations

Little is known about the impact of additive manufacturing in the spare part supply chain. A few studies are available, but they focus on specific parts and their applications only. A general model, which can be adapted to different applications, is nonexistent. This dissertation proposes a decision making framework that enables an interested practitioner/manager to decide whether using additive manufacturing to make spare parts on demand is economical when compared to conventional warehousing strategy. The framework consists of two major components: a general discrete event simulation model and a process of designing a wide range of simulation scenarios. The goal …


Process Development For Compression Molding Of Hybrid Continuous And Chopped Carbon Fiber Prepreg For Production Of Functionally Graded Composite Structures, Corinne Marie Warnock Dec 2015

Process Development For Compression Molding Of Hybrid Continuous And Chopped Carbon Fiber Prepreg For Production Of Functionally Graded Composite Structures, Corinne Marie Warnock

Master's Theses

Composite materials offer a high strength-to-weight ratio and directional load bearing capabilities. Compression molding of composite materials yields a superior surface finish and good dimensional stability between component lots with faster processing compared to traditional manufacturing methods. This experimental compression molding capability was developed for the ME composites lab using unidirectional carbon fiber prepreg composites. A direct comparison was drawn between autoclave and compression molding methods to validate compression molding as an alternative manufacturing method in that lab. A method of manufacturing chopped fiber from existing unidirectional prepreg materials was developed and evaluated using destructive testing methods. The results from …


Chemical And Electronic Structure Of Surfaces And Interfaces In Cadmium Telluride Based Photovoltaic Devices, Douglas Arthur Duncan Dec 2015

Chemical And Electronic Structure Of Surfaces And Interfaces In Cadmium Telluride Based Photovoltaic Devices, Douglas Arthur Duncan

UNLV Theses, Dissertations, Professional Papers, and Capstones

The surface and interface properties are of the upmost importance in the understanding, optimization, and application for photovoltaic devices. Often the chemical, electronic, and morphological properties of the films are empirically optimized, however when progress slows, a fundamental understanding of these properties can lead to breakthroughs. In this work, surfaces and interfaces of solar cell-relevant films are probed with a repertoire of X-ray analytical and microanalysis techniques including X-ray photoelectron (XPS), X-ray excited Auger electron (XAES), X-ray emission (XES) spectroscopies, and atomic force (AFM) and scanning electron (SEM) microscopies.

Silicon-based devices currently dominate the solar market, which is rather inflexible …


An Approach To Model Plastic Deformation Of Metallic Plates In Hypervelocity Impact Experiments, Shawoon Kumar Roy Dec 2015

An Approach To Model Plastic Deformation Of Metallic Plates In Hypervelocity Impact Experiments, Shawoon Kumar Roy

UNLV Theses, Dissertations, Professional Papers, and Capstones

Space structures are subjected to micro-meteorite impact at extremely high velocities of several kilometers per second. Similarly, design of military equipment requires understanding of material behavior under extremely high pressure and temperature. Study of material behavior under hypervelocity impact (HVI) poses many challenges since few researchers so far have approached this problem. Material models, equations of the state, and fracture mechanics are not well understood under these conditions.

The objective of this research is to present an approach for studying plastic deformation of metallic plates under HVI conditions. A two-stage light gas gun can be used to simulate these conditions …


Crystalline Phase Change In Steel Alloys Due To High Speed Impact, Muna Slewa Dec 2015

Crystalline Phase Change In Steel Alloys Due To High Speed Impact, Muna Slewa

UNLV Theses, Dissertations, Professional Papers, and Capstones

The effect of hypervelocity projectile impact on the crystalline grain structure near the target impact location of A36 steel has been studied. A36 steel is a mostly single phase body centered cubic material (BCC). Impact velocities ranged from 3.54 to 6.70 km/sec. Target materials were studied before and after impact to determine if these impact conditions result in a phase change of the A36. Scanning electron microscopy, electron back-scatter diffraction, and x-ray diffraction methods were used to investigate deformation, lattice defects, twinning, and phase transformation. A limited number of impacted targets made from 304L and HY100 steels were also examined. …


The Influence Of Iron On Arctic Thule Migration Patterns, Alina T. Aquino Dec 2015

The Influence Of Iron On Arctic Thule Migration Patterns, Alina T. Aquino

UNLV Theses, Dissertations, Professional Papers, and Capstones

Arctic scholars have yet to fully understand the reasons behind the migration of Thule culture from the western to the eastern Arctic. This rapid movement across such a vast area into environmentally diverse regions marks a critical period of cultural change that is usually summarized by two theoretical positions. Ecological theories postulated environmental changes placed selective pressures on traditional food sources that required Thule hunters to follow migrating prey. Theories that focused on material acquisition alternately proposed the Thule followed the trail of meteoric iron eastward into northwestern Greenland.

This research sought to examine the eastward Thule migration from another …


Effect Of Processing History And Material Properties On The Growth Of Wrinkle Amplitude, Yu-Cheng Chen Nov 2015

Effect Of Processing History And Material Properties On The Growth Of Wrinkle Amplitude, Yu-Cheng Chen

Doctoral Dissertations

Wrinkling has been employed by many organisms to form unique topography, such as fingerprints, gut villi, and surface of flower petal cells. The wavy wrinkle structure provides friction enhancement, surface area increase, optical, and wetting properties improvement. Inspired by Nature, scientists have created wrinkles synthetically and proposed numerous uses for them. However, wrinkling surfaces encounters limitations on achieving massive area and high amplitude-to-wavelength ratio (aspect ratio). The three phase contact line wrinkling technique creates well-defined wrinkles in a continuous fashion, and has great potential to scale-up for massive production. In addition to the velocity dependent adhesion force, we find the …


Mimicking The Arterial Microenvironment With Peg-Pc To Investigate The Roles Of Physicochemical Stimuli In Smc Phenotype And Behavior, William G. Herrick Aug 2015

Mimicking The Arterial Microenvironment With Peg-Pc To Investigate The Roles Of Physicochemical Stimuli In Smc Phenotype And Behavior, William G. Herrick

Doctoral Dissertations

The goal of this dissertation was to parse the roles of physical, mechanical and chemical cues in the phenotype plasticity of smooth muscle cells (SMCs) in atherosclerosis. We first developed and characterized a novel synthetic hydrogel with desirable traits for studying mechanotransduction in vitro. This hydrogel, PEG-PC, is a co-polymer of poly(ethylene glycol) and phosphorylcholine with an incredible range of Young’s moduli (~1 kPa - 9 MPa) that enables reproduction of nearly any tissue stiffness, exceptional optical and anti-fouling properties, and support for covalent attachment of extracellular matrix (ECM) proteins. To our knowledge, this combination of mechanical range, low …


Structure And Optical Properties Of Transition Metal Dichalcogenides (Tmds) – Mx2 (M = Mo, W & X = S, Se) Under High Pressure And High Temperature Conditions, Nirup Reddy Bandaru Aug 2015

Structure And Optical Properties Of Transition Metal Dichalcogenides (Tmds) – Mx2 (M = Mo, W & X = S, Se) Under High Pressure And High Temperature Conditions, Nirup Reddy Bandaru

UNLV Theses, Dissertations, Professional Papers, and Capstones

Layered structured materials such as transition metal dichalcogenides (TMDs) have gained immense interest in recent times due to their exceptional structural, electrical and optical properties. Recent studies show semiconducting TMDs such as MX2 (M= Mo, W & X = S, Se) could be used as potential shock absorbing material, which has resulted in extensive studies on structural stability of these materials under the influence of high pressure. Understanding the structural stability of transition metal dichalcogenides (TMDs) such as MoS2, MoSe2, WS2, and WSe2 under high pressure has been very challenging due to contradicting observations and interpretations reported in the …


Feasibility Study Of Custom Manufacturing Of Ionic Polymer-Metal Composite Sensors, Shelby E. Nelson Aug 2015

Feasibility Study Of Custom Manufacturing Of Ionic Polymer-Metal Composite Sensors, Shelby E. Nelson

UNLV Theses, Dissertations, Professional Papers, and Capstones

The ability to create an ion exchange membrane with any shape or thickness through custom manufacturing techniques is highly desirable in ionic polymer-metal composite (IPMC) research. This is caused by the poor selection and limited availability of certain thicknesses of commercial ion exchange membranes. The objective of this study is to determine the feasibility of manufacturing custom ion exchange membranes for IPMC sensors. The manufacturing methods used in this study are extrusion, injection molding, and hot pressing. A commercial membrane from Golden Energy Fuel Cells (GEFC) is used as a comparison. After the membranes are fabricated, certain properties of the …


Molecular Dynamics Investigation Of The Arabinan-Cellulose Interface For Cellulose Nanocomposite Applications, Luke Thornley Jun 2015

Molecular Dynamics Investigation Of The Arabinan-Cellulose Interface For Cellulose Nanocomposite Applications, Luke Thornley

Materials Engineering

Atom level computer simulations of the arabinan and cellulose interface were performed to better understand the mechanisms that give arabinan-cellulose composites (ArCCs) their strength with the goal to improve man-made ArCCs. The molecular dynamics (MD) software LAMMPS was used in conjunction with the ReaxFF/c force field to model the bond between cellulose and arabinan. A cellulose nanocrystal with dimensions 51 x 32 x 8 Å was minimized with various weight percent of water, 0%, 3%, 5%, 8%, 10%, and 12%. After the system was equilibrated for at least 100,000 femtoseconds, an arabinan molecule composed of 8 arabinose rings was added …


Effect Of Time Delay Between Etching And Adhesive Bonding (“Outlife” Time) On Lap-Shear Strength Of Aluminum Alloys Using Environmentally-Friendly P2 Etch, Josh Barkhimer, Matthew Erich, Gokul Nair Jun 2015

Effect Of Time Delay Between Etching And Adhesive Bonding (“Outlife” Time) On Lap-Shear Strength Of Aluminum Alloys Using Environmentally-Friendly P2 Etch, Josh Barkhimer, Matthew Erich, Gokul Nair

Materials Engineering

Raytheon Company currently uses a Forest Products Laboratory (FPL) paste etchant for preparing aluminum surfaces for adhesive bonding, and FPL is a source of hazardous hexavalent chromium. The goal of this study was to evaluate a less-toxic P2 paste etchant as a possible replacement. Coupons of 2024-T3, 6061-T6, and 7075-T6 grades of aluminum alloy were solvent-degreased, abrasively cleaned, and etched at room temperature using P2 paste following a strict protocol adopted from Raytheon. Coupons were then left exposed to air for assigned time intervals (or “outlife” times) of 0, 1, 4, 8, 16, and 63 or 72 hours. The aluminum …


Improving Product Design By Predicting Flexural Strength Of A Honeycomb Core Sandwich Panel Composite Using Ply Tensile Strength, Justin Lui, Javal Patel Jun 2015

Improving Product Design By Predicting Flexural Strength Of A Honeycomb Core Sandwich Panel Composite Using Ply Tensile Strength, Justin Lui, Javal Patel

Materials Engineering

The use of composite sandwich panels has increased in the aerospace industry. Prediction of a theoretical composite construction's flexural properties is important for efficient composite product designs. Utilizing the four point flexure geometry defined by Zodiac Aerospace, Santa Maria, CA, a mechanical model was derived to predict the flexural behavior of a theoretical honeycomb core sandwich composite using laminate tensile properties. The most common failure mode of Zodiac Aerospace’s four point bend test is a failure in tension of the bottom laminate. Given this information, ASTM D3039 (Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials) was chosen …


Energy Selective Neutron Imaging For The Characterization Of Polycrystalline Materials, Robin Woracek May 2015

Energy Selective Neutron Imaging For The Characterization Of Polycrystalline Materials, Robin Woracek

Doctoral Dissertations

This multipart dissertation focuses on the development and evaluation of advanced methods for material testing and characterization using neutron diffraction and imaging techniques. A major focus is on exploiting diffraction contrast in energy selective neutron imaging (often referred to as Bragg edge imaging) for strain and phase mapping of crystalline materials. The dissertation also evaluates the use of neutron diffraction to study the effect of multi-axial loading, in particular the role of applying directly shear strains from the application of torsion. A portable tension-torsion-tomography loading system has been developed for in-situ measurements and integrated at major user facilities around the …


Impact Of Fuel Rod Coatings On Reactor Performance And Safety, Ian Robert Stewart May 2015

Impact Of Fuel Rod Coatings On Reactor Performance And Safety, Ian Robert Stewart

Masters Theses

This study evaluates the use of a ceramic coating on the Zr-alloy cladding within a PWR using four ceramic compounds of 5 and 10 micron thicknesses: ZrO2, TiAlN, Ti2AlC, and Ti3AlC2. The film’s impact is assessed for variation on: reactivity, fuel cycle length, maximum temperature, film’s roughness, and transient conditions. The reactivity is analyzed using the following methods: change in the multiplication factor (k) each film introduces to the system using the ABH method, and Monte Carlo software (MCNP). Both methods are in good agreement, yielding less than half a percent change from a reference, no-film fuel pin. In order …


High Pressure Behavior Of Mullite-Type Oxides: Phase Transitions, Amorphization, Negative Linear Compressibility And Microstructural Implications, Patricia Kalita May 2015

High Pressure Behavior Of Mullite-Type Oxides: Phase Transitions, Amorphization, Negative Linear Compressibility And Microstructural Implications, Patricia Kalita

UNLV Theses, Dissertations, Professional Papers, and Capstones

Even though mullite occurs rarely in nature, it is perhaps one of the most important phases in both traditional and advanced ceramics. Existing and emerging applications of mullite and mullite-type materials include: high-temperature composites, aerospace materials, ballistic shielding for military applications and even non-linear optical materials. There are many uncertainties regarding the basic physical properties of mullite-type materials, particularly in terms of their high-pressure structural stability and mechanical behavior that are important to address for emerging applications of mullites as engineering materials. This work is the first reported comprehensive investigation of the high –pressure structural behavior of several different mullites …


Computational Study Of Microstructure-Propertymechanism Relations In Ferroic Composites, Fengde D. Ma Jan 2015

Computational Study Of Microstructure-Propertymechanism Relations In Ferroic Composites, Fengde D. Ma

Dissertations, Master's Theses and Master's Reports - Open

Ferroic materials, as notable members of smart materials, have been widely used in applications that perform sensing, actuation and control. The macroscopic property change of ferroic materials may become remarkably large during ferroic phase transition, leading to the fact that the macroscopic properties can be tuned by carefully applying a suitable external field (electric, magnetic, stress). To obtain an enhancement in physical and/or mechanical properties, different kinds of ferroic composites have been fabricated. The properties of a ferroic composite are determined not only by the properties and relative amounts of the constituent phases, but also by the microstructure of individual …


Microindentation Of Bi57in26sn17 Lead-Free Alloy, Ruiting Zhao Jan 2015

Microindentation Of Bi57in26sn17 Lead-Free Alloy, Ruiting Zhao

Theses and Dissertations--Chemical and Materials Engineering

There is great need to understand the mechanical properties of lead-free alloys—an alternative of lead-based alloys—to address the environmental problems associated with the use of lead-based materials in microelectronics. In this work, the microstructures of Bi57In26Sn17 lead-free alloy were examined using Optical Microscopy and Energy Dispersive X-ray Spectroscopy analysis. The micro-indentation technique was used to study the mechanical properties of Bi57In26Sn17 lead-free alloy. The experimental results of the hardness and contact modulus were presented and discussed. Local creep during the indentation was observed from the load-displacement curves. The Vickers hardness (HV) increases with the decrease of the indentation depth, suggesting …


Simulation Of Infiltrating Rate Driven By Surface Tension-Viscosity Of Liquid Elements From The Titanium Group Into A Packed Bed, Arturo Medina Jan 2015

Simulation Of Infiltrating Rate Driven By Surface Tension-Viscosity Of Liquid Elements From The Titanium Group Into A Packed Bed, Arturo Medina

Open Access Theses & Dissertations

The simulation of infusion of molten reactive metals (e.g., yttrium) into a porous, carbide packed bed to create carbide and boride composites was studied at ultrahigh temperatures (>1700°C). The infusion was investigated through a computational fluid dynamic (CFD) system of capillary pores and compared to a predicted analytical calculation formulated by Selmak and Rhines. Simulations of two-phase flow penetration of yttrium into a packed bed of B4C were investigated and compared with titanium, zirconium, hafnium, and samarium liquids. The non-reactive, liquid metal infusion was primarily driven by the surface tension and viscosity. The liquid metal depth and rate of …


Processing And Property Evaluation Of Tungsten-Based Mixed Oxides For Photovoltaics And Optoelectronics, Mirella Vargas Jan 2015

Processing And Property Evaluation Of Tungsten-Based Mixed Oxides For Photovoltaics And Optoelectronics, Mirella Vargas

Open Access Theses & Dissertations

Tungsten Oxide (WO3) films and low-dimensional structures have proven to be promising candidates in the fields of photonics and electronics. WO3 is a well-established n-type semiconductor characterized by unique electrochromic behavior, an ideal optical band gap that permits transparency over a wide spectral range, and high chemical integrity. The plethora of diverse properties endow WO3 to be highly effective in applications related to electrochromism, gas sensing, and deriving economical energy. Compared to the bulk films, a materials system involving WO3 and a related species (elements or metal oxides) offer the opportunity to tailor the electrochromic response, and an overall enhancement …


Novel Endohedral Derivatives Of Sc3n@C2n (N = 34, 40) And Unique Tether Controlled Bis-Functionalization Of Fullerenes, Maira Raquel Ceron Hernandez Jan 2015

Novel Endohedral Derivatives Of Sc3n@C2n (N = 34, 40) And Unique Tether Controlled Bis-Functionalization Of Fullerenes, Maira Raquel Ceron Hernandez

Open Access Theses & Dissertations

Since the discovery of fullerenes in 1985, their exohedral functionalization has been necessary to increase their solubility and explore their properties and potential applications in materials science and medicinal chemistry. This Thesis provides a short overview of the importance of electronic, size and shape complementarity in determining the structures of specific endohedral fullerene compounds. This is followed by a description of a new method for the separation of scandium nitride endohedral fullerenes Sc3N@C2n (n = 34, 39 and 40), and their monofunctionalization.

We also present the regioselective synThesis of easily isolable bis-derivatives of C60, C70, and M3N@Ih-C80 (M = Sc, …


Transition States And Modeling For Co9s8/Mos2 Catalysis, Gabriel Angel Gonzalez Jan 2015

Transition States And Modeling For Co9s8/Mos2 Catalysis, Gabriel Angel Gonzalez

Open Access Theses & Dissertations

Transition state computational studies of the sulfur removal from dibenzothiophene (DBT) molecule have herein been performed considering the Co9S8/MoS2 interface existing on unsupported Co/MoS2 catalysts. The linear synchronous transit (LST) and quadratic synchronous transit (QST) methods integrated in a density functional theory (DFT) program such as Dmol3 were used for the calculations of energy barriers of the transition states. Three different configurations present on the Co9S8/MoS2 interface have been envisaged as possible catalytic sites: sulfur-sulfur (S, S) sites, and molybdenum-sulfur (Mo, S) and molybdenum-molybdenum (Mo, Mo) edge sites. This study revealed that the (Mo, Mo) edge site is the most …


An Improved Sin-Hyperbolic Constitutive Model For Creep Deformation And Damage, Mohammad Shafinul Haque Jan 2015

An Improved Sin-Hyperbolic Constitutive Model For Creep Deformation And Damage, Mohammad Shafinul Haque

Open Access Theses & Dissertations

Inspection and maintenance of industrial gas turbines (IGTs) cost millions of dollars. Growing demand of obtaining higher IGT efficiency leads to higher temperature and pressure operating conditions. Long exposure of turbine components at elevated temperature and pressure

makes creep damage critically important to consider during planning, designing and operating conditions. Effective and economic maintenance requires accurate creep deformation, damage

evolution and rupture life prediction information. Creep prediction models are used to determine the state of the turbine components and to schedule the inspection, maintenance and replacement time periods. The more accurate the prediction model, the less is the overall cost …


Reaction Of Liquid Aluminium- Samarium Alloys With B4c At Ultra High Temperatures, Sanjay Shantha-Kumar Jan 2015

Reaction Of Liquid Aluminium- Samarium Alloys With B4c At Ultra High Temperatures, Sanjay Shantha-Kumar

Open Access Theses & Dissertations

Reactive studies between a packed bed of B4C and Al-Sm-Me (Me = Ti, Zr, Hf) alloy melts were carried out under a pseudo-isopiestic thermodynamic system. A graphite enclosure isolated the system under a temperature gradient with one end reaching temperatures greater than 1800 K and the opposite end of the graphite enclosure contains liquid Al with temperatures approximating 950 K. The liquid Al establishes an oxygen potential to control oxidation of very reactive elements (i.e., Al, Sm and Ti). The Al-Sm-Me alloy infuses into a packed bed of B4C reacting exothermically to form borides and carbides depending on the thermodynamic …


Transition Metal Carbide (Tmc) Novel Materials For Novel Catalytic Applications, Svetlana Lagoykina Jan 2015

Transition Metal Carbide (Tmc) Novel Materials For Novel Catalytic Applications, Svetlana Lagoykina

Open Access Theses & Dissertations

Transition metal carbides (TMC) constitute a diverse class of materials and traditionally have many technological applications. TMC became a subject of extensive research since 1973, when their platinum -like properties were discovered. They demonstrated high catalytical activity and selectivity in a variety of chemical reaction and have potential for some novel catalytic application.

This research is an effort to design new high effective, selective and stable bimetal or alkali promoted TMC catalyst. After extensive theoretical research a wide range of TMC, including bimetal and alkali promoted carbides, were synthesized by different methods. All solids were characterized by XRD and microscopy. …


The Examination Of Stress Corrosion Cracking In High Strength Carbon Steel Through Combined Mechanical-Electrochemical Testing, Jacob Sines Jan 2015

The Examination Of Stress Corrosion Cracking In High Strength Carbon Steel Through Combined Mechanical-Electrochemical Testing, Jacob Sines

Williams Honors College, Honors Research Projects

Through the analysis of materials and environments seen in industry a better understanding of the fundamentals behind degradation mechanisms can be observed. The scope of this project was to better understand the fundamentals behind the degradation of high strength pipeline steels in a lab setting to simulate an environment seen in industry. Specifically the degradation mechanisms of high and nearly neutral pH stress corrosion cracking were examined in environments that simulated oil and gas pipelines buried in soil. Experimentation was carried out utilizing X65 carbon steel specimen, a Gamry potentiostat, a CORTEST proof ring, a CORTEST slow strain rate machine, …


Design And Analysis Of A Novel Latch System Implementing Fiber-Reinforced Composite Materials, Francisco Guevara Jan 2015

Design And Analysis Of A Novel Latch System Implementing Fiber-Reinforced Composite Materials, Francisco Guevara

Open Access Theses & Dissertations

The use of fiber-reinforced composite materials have increased in the last four decades in high technology applications due to their exceptional mechanical properties and low weight. In the automotive industry carbon fiber have become popular exclusively in luxury cars because of its high cost. However, Carbon-glass hybrid composites offer an effective alternative to designers to implement fiber-reinforced composites into several conventional applications without a considerable price increase maintaining most of their mechanical properties. A door latch system is a complex mechanism that is under high loading conditions during car accidents such as side impacts and rollovers. Therefore, the Department of …


Novel Engineered Nanomaterials For Water Remediation And Gas Adsorption: Graphene Oxide And Carbon Nanotubes Decorated With Metal-Organic Frameworks And Magnetic Nanoparticles, Vahid Jabbari Jan 2015

Novel Engineered Nanomaterials For Water Remediation And Gas Adsorption: Graphene Oxide And Carbon Nanotubes Decorated With Metal-Organic Frameworks And Magnetic Nanoparticles, Vahid Jabbari

Open Access Theses & Dissertations

In the current study, a series of novel magnetic and non-magnetic hybrid nanocomposites based on metal-organic frameworks (MOFs) of M3(BTC)2 (M: Ni, Cu, Zn, and Cd), graphene oxide (GrO), and carbon nanotubes (CNTs), and Fe3O4 magnetic nanoparticles (MNPs) were developed via a green, simple and versatile solvothermal method at which GrO and CNT were used as platform to grow the MOFs and Fe3O4 MNPs over them. The as-synthesized nanocomposites were characterized by XRD, SEM, TEM, XPS, IR, Raman, TGA, and N2 adsorption/desorption isotherms. Morphological analysis confirmed successful growth of nano-size Fe3O4 MNPs and M3(BTC)2 MOFs over GrO and CNT platforms. …