Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering Science and Materials

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


Dynamic Range Limitations Of Low-Noise Microwave Transistors At Cryogenic Temperatures, Ahmet Hakan Coskun Jul 2017

Dynamic Range Limitations Of Low-Noise Microwave Transistors At Cryogenic Temperatures, Ahmet Hakan Coskun

Doctoral Dissertations

Dynamic range is an important metric that specifies the limits of input signal amplitude for the ideal operation of a given receiver. The low end of dynamic range is defined by the noise floor whereas the upper limit is determined by large-signal distortion. While dynamic range can be predicted in the temperature range where compact transistor models are valid, the lack of large-signal models at temperatures below -55 C prevents the prediction and optimization of dynamic range for applications that require cryogenic cooling. For decades, the main goal concerning the performance of these applications was lowering the noise floor of …