Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering Science and Materials

Pressure-Induced Phase Transition And Electronic Structure Changes In Equiatomic Fev, Homero Reyes Pulido Aug 2022

Pressure-Induced Phase Transition And Electronic Structure Changes In Equiatomic Fev, Homero Reyes Pulido

Open Access Theses & Dissertations

Classical molecular dynamics methods can accurately describe a broad set of many-atomssystems. Although more economical, the results given by this framework lack the precision capable of density functional theory (DFT). Therefore, the structural stability of the B2 phase of a body-centered-cubic iron-vanadium (FeV) alloy using DFT on the electronic structure level is analyzed to verify and further explain classical results obtained by our group in this same alloy. Using Quantum Espresso and Phonopy for the computational simulations, the plotted band structure, electronic density of states (eDOS), phonon dispersions, charge density, and Fermi surfaces for various compressed unit cells are presented. …


Evolution Of The Magnetic Properties On Van Der Waals Layered Magnets Via Pressure And Proton Irradiation, Rubyann Olmos May 2022

Evolution Of The Magnetic Properties On Van Der Waals Layered Magnets Via Pressure And Proton Irradiation, Rubyann Olmos

Open Access Theses & Dissertations

Probing the magnetism in quasi two-dimensional materials has the potential in driving their properties towards future use in spin electronic based devices. Studying such layered magnets will enable the scientific community to uncover tunable exotic phases such as superconductivity, quantum paramagnetism, etc. This work examines the influence of two types of external perturbations, namely, the pressure and proton irradiation, on the magnetic properties of several compounds in the van der Waals crystal family.

Pressure has been found to induce structural and magnetic phase transitions in many of these materials. Using hydrostatic pressure as a disorderless approach to manipulate the interlayer …


A Study Of The Frustrated Honeycomb Battery Material Na2ni2teo6, Nathan Christopher Episcopo May 2021

A Study Of The Frustrated Honeycomb Battery Material Na2ni2teo6, Nathan Christopher Episcopo

Open Access Theses & Dissertations

The P2-type layered hexagonal compound Na2Ni2TeO6 with Ni2+ on a honeycomb lattice was synthesized by the standard solid-state route. Structural characterization chemical phase purity was confirmed by Rietveld refinement of laboratory and synchrotron data. The crystal structure refines well in the P63/mcm space group. Single crystal growth trials using the self-flux-melt method were conducted with limited success. The magnetic transition temperature pertaining to Ni2+ lattice was confirmed by analysis of specific heat capacity to be . The magnetic susceptibility remains largely unchanged in magnetic field of and external pressure of . There is an almost linear response in isothermal magnetization …


Development Of Software Tools And Experimental In Situ Electron Spin Resonance For Characterizing The Magnetic And Electrocatalytic Properties Of Transition Metal Chalcogenide Crystals, Jose Armando Delgado Jan 2020

Development Of Software Tools And Experimental In Situ Electron Spin Resonance For Characterizing The Magnetic And Electrocatalytic Properties Of Transition Metal Chalcogenide Crystals, Jose Armando Delgado

Open Access Theses & Dissertations

Studying the magnetic properties and crystal defects of transition metal chalcogenide crystals is of paramount importance for utilizing them for next generation spintronics devices and hydrogen evolution reaction catalysts. Hydrothermally grown transition metal chalcogenide nanocrystals (MoS2, Ru2S3, Rh2S3, Co2S8) were chosen as catalysts for the hydrogen evolution reaction due to their low dimensionality and previous utilization as catalysts for hydrodesulfurization. The relationship between crystal defect sites and catalytic activity must be discerned to maximize the efficiency of hydrogen production during the hydrogen evolution reaction. ESR spectroscopy was utilized as a spin sensitive technique to study the defects and local changes …


Observed Superspin-Glass Behavior In Ni0.5zn0.5fe2o4 Nanoparticles, Antony Adair Jan 2009

Observed Superspin-Glass Behavior In Ni0.5zn0.5fe2o4 Nanoparticles, Antony Adair

Open Access Theses & Dissertations

In this investigation we seek to identify the magnetic behavior of Ni0.5Zn0.5Fe2O4 nanoparticles though AC-susceptibility and DC-magnetization measurements. Powder x-ray diffraction was performed to determine the purity and average diameter ( ~ 9nm) of the particles. Aditionally, structure was confirmed by comparison through the International Centre for Diffraction Data's Powder Diffraction File [52] (PDF # 08-0234).

Zero-field cooled and field cooled DC magnetization measurements (bifurcation and blocking temperature), as well as M(H) hysteresis (below and above the blocking temperature) lead us to initially suggest that the material may in fact be superparamagnetic. However, further investigation of the real AC susceptibility …