Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

2017

Electrocatalysis

Articles 1 - 2 of 2

Full-Text Articles in Engineering Science and Materials

Core-Shell Pd@Pt Ultrathin Nanowires As Durable Oxygen Reduction Electrocatalysts, Xin Wang, Yun-Jie Xiong, Liang-Liang Zou, Qing-Hong Huang, Zhi-Qing Zou, Hui Yang Dec 2017

Core-Shell Pd@Pt Ultrathin Nanowires As Durable Oxygen Reduction Electrocatalysts, Xin Wang, Yun-Jie Xiong, Liang-Liang Zou, Qing-Hong Huang, Zhi-Qing Zou, Hui Yang

Journal of Electrochemistry

This paper describes a simple CO-assisted reduction approach for the controllable synthesis of ultrathin Pd nanowires along the one-dimensional (1D) direction. Ultrathin Pt films from one to several atomic layers were successfully decorated onto ultrathin Pd nanowires by utilizing Cu UPD deposition, and followed by in-situ redox replacement reaction of UPD Cu by Pt. The core–shell structure and composition of the Pd@Pt ultrathin nanowires have been verified using transmission electron microscopy and energy dispersive X-ray spectrometry. The core–shell Pd@Pt ultrathin nanowires exhibited comparative electrocatalytic activity and improved durability for the oxygen reduction reaction in comparison with commercial Pt black. The …


Electrocatalysis Of Nanotin Dioxide In The Battery Reaction Of Zinc-Nitrobenzene, Xu-Guo Tu, Xiang-Yu Ma, Rui-Nan He, Xiao-Juan Wang, Chen Ling, Yun-Xia Sun, Song Chen Jun 2017

Electrocatalysis Of Nanotin Dioxide In The Battery Reaction Of Zinc-Nitrobenzene, Xu-Guo Tu, Xiang-Yu Ma, Rui-Nan He, Xiao-Juan Wang, Chen Ling, Yun-Xia Sun, Song Chen

Journal of Electrochemistry

The tin dioxide (SnO2) nanoparticles were synthesized by using a simple hydrothermal route in the presence of tetrapropyl ammonium bromide (TPAB) as a surfactant. Accordingly, the titanium mesh based SnO2 catalyst electrode was prepared. The morphologies and structures of SnO2 nanostructures were characterized by scanning electron microscopy and X-ray diffraction spectrometry. The influences of reactant concentration, reaction temperature and time on the morphology of the products were investigated in detail. The electrocatalytic performance of SnO2 for the reduction of nitrobenzene with zinc was studied. Possible formation process and growth mechanism for such hierarchical SnO2 …