Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomedical

Stereolithography

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering Science and Materials

Exploring Poly(Ethylene Glycol) As A Suitable Material For Peripheral Nerve Regeneration Scaffolds Manufactured By Stereolithography, Nubia Zuverza Jan 2009

Exploring Poly(Ethylene Glycol) As A Suitable Material For Peripheral Nerve Regeneration Scaffolds Manufactured By Stereolithography, Nubia Zuverza

Open Access Theses & Dissertations

One of the challenges in tissue engineering is to have spatial and temporal control over the biological elements within a scaffold used to guide regeneration for example of transected nerves. Some of the physical and chemical characteristics to regulate include incorporation of bioactive domains and release of chemical signals. This study presents the use of stereolithography (SL) to incorporate localized domains for cell adhesion in addition to include releasable nerve growth factor (NGF) in the process of building poly(ethylene glycol)diacrylate (PEGda) hydrogel scaffolds. Besides providing sites for cell attachment, an ideal nerve guidance conduit (NGC) should be able to release …


Stereolithography Of Poly(Ethylene Glycol) Hydrogels With Application In Tissue Engineering As Peripheral Nerve Regeneration Scaffolds, Karina Arcaute Jan 2008

Stereolithography Of Poly(Ethylene Glycol) Hydrogels With Application In Tissue Engineering As Peripheral Nerve Regeneration Scaffolds, Karina Arcaute

Open Access Theses & Dissertations

In recent years, rapid prototyping (RP) technologies initially developed to create prototypes prior to production for the automotive, aerospace, and other industries, have found applications in tissue engineering (TE). Several different RP technologies are being used to fabricate biocompatible 3D structures with controlled micro- and macro-scale characteristics. The focus of this research was to explore the capabilities of the RP technology, stereolithography (SL), for creating complex, 3D scaffolds with applications in TE using a photocrosslinkable biopolymer, poly(ethylene glycol) (PEG). The primary objective was to create an implantable multi-lumen nerve guidance conduit (NGC) for the regeneration of peripheral nerves.

Studies of …