Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Engineering Science and Materials

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb Jun 2024

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb

Theses and Dissertations

Implantable drug delivery devices have many benefits over traditional drug administration techniques and have attracted a lot of attention in recent years. By delivering the medication directly to the tissue, they enable the use of larger localized concentrations, enhancing the efficacy of the treatment. Passive-release drug delivery systems, one of the various ways to provide medication, are great inventions. However, they cannot dispense the medication on demand since they are nonprogrammable. Therefore, active actuators are more advantageous in delivery applications. Smart material actuators, however, have greatly increased in popularity for manufacturing wearable and implantable micropumps due to their high energy …


Development Of A 3d Printed Conductive Biopolymer For Cardiac Tissue Engineering, Britanny Lizeth Stark Dec 2023

Development Of A 3d Printed Conductive Biopolymer For Cardiac Tissue Engineering, Britanny Lizeth Stark

Open Access Theses & Dissertations

Cardiovascular disease (CVD) is the leading cause of death in the US, with approximately 859,000 deaths each year. The major contributor to CVD is Acute Myocardial Infarction (AMI), which causes the death of approximately 25% of the cardiomyocytes present in the left ventricle of the heart. After AMI, the adult human heart has a very limited regenerative capacity. Moreover, the electrical propagation of the myocardium is severely disrupted, making the heart more susceptible to failure and patient death. However, current pharmacological treatments do not address the loss of cardiomyocytes and the disruption of electrical propagation in the heart. Tissue engineering …


Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


Insole Fall Prevention Device, Nick M. Hughes, Andrew M. Slaboda May 2022

Insole Fall Prevention Device, Nick M. Hughes, Andrew M. Slaboda

Biomedical Engineering

Falls among the aging population occur every single day, with 1 in every 5 resulting in some injury and 300,000 hospitalized every year with a hip fracture [1]. The most popular and effective way to mitigate these falls is through physical therapist intervention. However, with the increased popularity in telerehab, many patients at risk for falls cannot accurately convey their gait tendencies to their physical therapists from the comfort of their home or while not in direct contact with the PT. A device like an insole, implanted with force sensors, which measures different parts of a patient’s foot, could convey …


Development Of A Wireless Telemetry Load And Displacement Sensor For Orthopaedic Applications, William Anderson Jul 2021

Development Of A Wireless Telemetry Load And Displacement Sensor For Orthopaedic Applications, William Anderson

Electronic Thesis and Dissertation Repository

Due to sensor size and supporting circuitry, in vivo load and deformation measurements are currently restricted to applications within larger orthopaedic implants. The objective of this thesis is to repurpose a commercially available low-power, miniature, wireless, telemetric, tire-pressure sensor (FXTH87) to measure load and deformation for future use in biomechanical applications. The capacitive transducer membrane of the FXTH87 was modified, and a relationship was reported between applied compressive deformation and sensor signal value. The sensor package was embedded within a deformable enclosure to illustrate potential applications of the sensor for monitoring load. Finite element analysis was an effective tool to …


Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand Jan 2021

Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand

Dissertations and Theses

Localized chemical delivery plays an essential role in the fundamental information transfers within biological systems. Thus, the ability to mimic the natural chemical signal modulation would provide significant contributions to understand the functional signaling pathway of biological cells and develop new prosthetic devices for neurological disorders. In this paper, we demonstrate a light-controlled hydrogel platform that can be used for localized chemical delivery in a high spatial resolution. By utilizing the photothermal behavior of graphene-hydrogel composites confined within micron-sized fluidic channels, patterned light illumination creates the parallel and independent actuation of chemical release in a group of fluidic ports. The …


Supercritical Processed Decellularized Extracellualr Matrix As Regeneration Therapeutics Applying 3d Printing, Seungwon Chung Jan 2020

Supercritical Processed Decellularized Extracellualr Matrix As Regeneration Therapeutics Applying 3d Printing, Seungwon Chung

Open Access Theses & Dissertations

Extracellular matrix has been broadly applied and show great promise in medical applications and tissue engineering. Product of extracellular matrix (ECM) should be treated with decellularization and purification process. Supercritical carbon dioxide treatment is of particular interest for purifying ECM because of its medically available and rapid speed of process. However, it is not fully researched in treatment of biomaterials for tissue engineering. Therefore, we investigated optimal conditions of supercritical carbon dioxide processing in different extracting parameters from porcine adipose tissue. The 3-day, dual treatment including enzymatic decellularization and supercritical fluid extraction of pork adipose tissue were performed. Two types …


The Study Of Non-Permanent Tattoo Ink Using Nano Silver Compounds And Untact 3d Printing Technology, Jisu Lee Jan 2020

The Study Of Non-Permanent Tattoo Ink Using Nano Silver Compounds And Untact 3d Printing Technology, Jisu Lee

Open Access Theses & Dissertations

Due to a recent epidemic of COVID 19, the possibility of 3D tattoo printing technology using the Internet of Things (IoT) control system developed in a non-face-to-face contact process was identified. A non-surgical tattoo process and hygiene safety differentiated with silver tattoo ink was used to solve the health problems arising from the surgical tattoo process and to identify 3D tattoo printing techniques through a non-personal contact concept. During the tattoo processing, the image selected by the customer is sent to a designated printer via an IoT control system in a separate location. A piston-type extruder (PTE) printing technique was …


Fabrication, Development, And Characterization Of Hipco Swcnt - Alginate Hydrogel Composites For Cellular Product Applications, Fabian Armando Alvarez-Primo Jan 2020

Fabrication, Development, And Characterization Of Hipco Swcnt - Alginate Hydrogel Composites For Cellular Product Applications, Fabian Armando Alvarez-Primo

Open Access Theses & Dissertations

In this study, we designed, synthesized, and characterized ultrahigh purity single-walled carbon nanotube (SWCNT)-alginate hydrogel composites. Among the parameters of importance in the formation of an alginate-based hydrogel composite with single-walled carbon nanotubes, are their varying degrees of purity, their particulate agglomeration and their dose-dependent correlation to cell viability, all of which have an impact on the resultant compositeâ??s efficiency and effectiveness towards biomedical applications. To promote their homogenous dispersion by preventing agglomeration of the SWCNT, at first, we used three different surfactants-sodium dodecyl sulfate (SDS-anionic), cetyltrimethylammonium bromide (CTAB-cationic), and Pluronic F108 (nonionic). After experimentation and corroboration through evidence obtained …


Implementation Of Magnesium Alloy Az91d On Wire And Arc Additive Manufacturing, David Adrian Martinez Holguin Jan 2018

Implementation Of Magnesium Alloy Az91d On Wire And Arc Additive Manufacturing, David Adrian Martinez Holguin

Open Access Theses & Dissertations

As progress on Additive Manufacturing (AM) techniques focusing on ceramics and polymers evolve, metals continue to be a challenging material to manipulate when fabricating products. Current methods, such as Selective Laser Sintering (SLS) and Electron Beam Melting (EBM) face many intrinsic limitations due to the nature of their processes. Material selection, elevated cost and low deposition rates are some of the barriers to consider when one of these methods is to be used for the fabrication of engineering products. The research here presented demonstrates the use of a Wire and Arc Additive Manufacturing (WAAM) system for the creation of metallic …


Process-Structure-Property Relationship In Magnesium-Based Biodegradable Alloy For Biomedical Applications, Pramanshu Trivedi Jan 2017

Process-Structure-Property Relationship In Magnesium-Based Biodegradable Alloy For Biomedical Applications, Pramanshu Trivedi

Open Access Theses & Dissertations

Magnesium alloys are considered to be the next generation of biomaterials because of their ability to degrade in the physiological environment. We elucidate here the impact of multiaxial forging of Mg-2Zn-2Gd alloy on grain refinement to sub-micron regime and relate the structure to mechanical properties and biological functionality. As-cast and annealed samples were multiaxial forged (MAF) for a total number of two passes with a true strain of ~2/pass. Considering that the microstructure governs the biological response of materials, we studied the constituents of the microstructure in conjunction with the mechanical behavior. The antimicrobial behavior in a Mg-2Zn-2Gd alloy with …


On Demand 3d Printed Hybrid Scaffolds For Tissue Engineering Applications, Ivan D. Hernandez Jan 2017

On Demand 3d Printed Hybrid Scaffolds For Tissue Engineering Applications, Ivan D. Hernandez

Open Access Theses & Dissertations

A composite 3D printed polymer scaffold with inbuilt porosity and filled with a hydrogel can provide an ideal support system for cell growth, proliferation, and vascularization. Therefore, a hybrid system of 3D printed polycaprolactone (PCL) scaffold and a hydroxyapatite-based hydrogel was developed for application in the reconstruction of bone defects, which are inherently difficult to repair without any guided therapies. In the present study, a 3D printed gyroid structure of PCL allowed the loading of a higher amount of hydrogel as compared to conventionally used 3D printed mesh structure of the same volume and strut thickness. The hydrogel was composed …


Implementation Of New System For Oxygen Generation And Carbon Dioxide Removal, Angelo Peter Karavolos Jan 2016

Implementation Of New System For Oxygen Generation And Carbon Dioxide Removal, Angelo Peter Karavolos

Open Access Theses & Dissertations

This research effort develops an integrated system for CO2 removal and O2 production. A unique material, dodeca-tungsto-phosphoric acid (H3PO4W12O3; henceforth referred to as DTPA) is mixed with tetra-ethyl-ortho-silicate Si(OC2H5)4 or TEOS. This mixture exhibits unique properties of heat absorption and high electrical conductivity. In the system described herein, the DTPA resides within a cross linked arrangement of TEOS. The DTPA furnishes a source of O2, while the TEOS furnishes structural support for the large DTPA crystals. In addition, the large amount of H2O within the crystal also adsorbs CO2. It can also be cross-linked with other polymers such as polycarbonate, …


Vascularization In Interconnected 3d Printed Ti-6al-4v Foams With Hydrogel Matrix For Biomedical Bone Replacement Implants, Victor Correa Jan 2016

Vascularization In Interconnected 3d Printed Ti-6al-4v Foams With Hydrogel Matrix For Biomedical Bone Replacement Implants, Victor Correa

Open Access Theses & Dissertations

Abstract:

Vascularization or angiogenesis on newly implanted metal orthopedic implants has remained a challenge in the field of tissue engineering. In this research, an interconnected foam structure of Ti-6Al-4V was micro-fabricated by Electron Beam Melting (EBM) technique. The foam in question has a density of 1.77g/cm3 with 60% porosity and a tensile strength of 18GPa. An Extracellular Matrix based hydrogel was added as an aqueous matrix to the foam in question. Hypoxia mimetic stress has been closely related to many wound healing biomedical applications as it increases survival and proliferation molecular signals. To that end, increased expression of Hypoxia-Inducible Factor-1α …


Wettability Of Magnesium Based Alloys, Victor Manuel Ornelas Jan 2016

Wettability Of Magnesium Based Alloys, Victor Manuel Ornelas

Open Access Theses & Dissertations

The premise of this project was to determine the wettability behavior of Mg-based alloys using three different liquids. Contact angle measurements were carried out along with utilizing the Zisman method for obtaining values for the critical surface tension. Adhesion energy values were also found through the use of the Young-Dupre equation. This project utilized the Mg-based alloy Mg-2Zn-2Gd with supplemented α-Minimum Essential Medium (MEM), Phosphate Buffer Saline solution (PBS), and distilled water. These three liquids are commonly used in cell cultivation and protein adsorption studies. Supplemented α-MEM consisted of α-MEM, fetal bovine serum, and penicillin-streptomycin. Mg-2Zn-2Gd was used because of …


Development Of A Novel Handheld Device For Active Compensation Of Physiological Tremor, Abhijit Saxena Oct 2012

Development Of A Novel Handheld Device For Active Compensation Of Physiological Tremor, Abhijit Saxena

Electronic Thesis and Dissertation Repository

In microsurgery, the human hand imposes certain limitations in accurately positioning the tip of a device such as scalpel. Any errors in the motion of the hand make microsurgical procedures difficult and involuntary motions such as hand tremors can make some procedures significantly difficult to perform. This is particularly true in the case of vitreoretinal microsurgery. The most familiar source of involuntary motion is physiological tremor. Real-time compensation of tremor is, therefore, necessary to assist surgeons to precisely position and manipulate the tool-tip to accurately perform a microsurgery. In this thesis, a novel handheld device (AID) is described for compensation …


Raman And Infrared Study Of Electrospun Plla/Pcl Nanofiber Blends For Use In Tissue Engineering, Jose Luis Enriquez Carrejo Jan 2012

Raman And Infrared Study Of Electrospun Plla/Pcl Nanofiber Blends For Use In Tissue Engineering, Jose Luis Enriquez Carrejo

Open Access Theses & Dissertations

Recently, the biomedical engineering field has developed at a very fast pace as improved techniques and materials become available to promote its growth. Consequently, the research in polymeric biomaterials has been highly stimulated by this trend. The goal of the current research is to demonstrate the usefulness of the Raman scattering, Raman mapping, and infrared absorption spectroscopies to tissue engineering, by spectroscopically characterizing blends of PLLA and PCL polymers, which were prepared by electrospinning with and without cell addition. The proposed use of these blends is as primary biomaterials in biodegradable scaffolds used in tissue engineering. Both Raman and infrared …


Exploring Poly(Ethylene Glycol) As A Suitable Material For Peripheral Nerve Regeneration Scaffolds Manufactured By Stereolithography, Nubia Zuverza Jan 2009

Exploring Poly(Ethylene Glycol) As A Suitable Material For Peripheral Nerve Regeneration Scaffolds Manufactured By Stereolithography, Nubia Zuverza

Open Access Theses & Dissertations

One of the challenges in tissue engineering is to have spatial and temporal control over the biological elements within a scaffold used to guide regeneration for example of transected nerves. Some of the physical and chemical characteristics to regulate include incorporation of bioactive domains and release of chemical signals. This study presents the use of stereolithography (SL) to incorporate localized domains for cell adhesion in addition to include releasable nerve growth factor (NGF) in the process of building poly(ethylene glycol)diacrylate (PEGda) hydrogel scaffolds. Besides providing sites for cell attachment, an ideal nerve guidance conduit (NGC) should be able to release …


Stereolithography Of Poly(Ethylene Glycol) Hydrogels With Application In Tissue Engineering As Peripheral Nerve Regeneration Scaffolds, Karina Arcaute Jan 2008

Stereolithography Of Poly(Ethylene Glycol) Hydrogels With Application In Tissue Engineering As Peripheral Nerve Regeneration Scaffolds, Karina Arcaute

Open Access Theses & Dissertations

In recent years, rapid prototyping (RP) technologies initially developed to create prototypes prior to production for the automotive, aerospace, and other industries, have found applications in tissue engineering (TE). Several different RP technologies are being used to fabricate biocompatible 3D structures with controlled micro- and macro-scale characteristics. The focus of this research was to explore the capabilities of the RP technology, stereolithography (SL), for creating complex, 3D scaffolds with applications in TE using a photocrosslinkable biopolymer, poly(ethylene glycol) (PEG). The primary objective was to create an implantable multi-lumen nerve guidance conduit (NGC) for the regeneration of peripheral nerves.

Studies of …