Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Electrical and Computer Engineering

Design And Development Of Poly -(3 -Hexylthiophene) Field Effect Transistors, Fengliang Xue Oct 2005

Design And Development Of Poly -(3 -Hexylthiophene) Field Effect Transistors, Fengliang Xue

Doctoral Dissertations

Organic field effect transistors (OFETs) with poly(3-hexylthiophene) (P3HT) as the active layer are developed and studied. The device characteristics are significantly affected by source/drain contact resistance, and P3HT-SiO 2 interface and the traps. These results are verified by the numerical device simulations. The temperature dependence of device mobility is studied, which indicates that the carrier transport is either heat-assisted or heat-limited at different temperature ranges. The on/off ratio and threshold voltage are found to be dependent on the temperature. Hysteresis effect due to gate electric stress is investigated. The silanol groups present at the SiO2 surface are thought to be …


Real-Space Electron Transfer In Iii-Nitride Metal-Oxide-Semiconductor-Heterojunction Structures, S. Saygi, A. Koudymov, V. Adivarahan, J. Yang, Grigory Simin, M. Asif Khan, J. Deng, R. Gaska, M. S. Shur Jul 2005

Real-Space Electron Transfer In Iii-Nitride Metal-Oxide-Semiconductor-Heterojunction Structures, S. Saygi, A. Koudymov, V. Adivarahan, J. Yang, Grigory Simin, M. Asif Khan, J. Deng, R. Gaska, M. S. Shur

Faculty Publications

The real-space transfer effect in a SiO2∕AlGaN∕GaN metal-oxide-semiconductor heterostructure (MOSH) from the two-dimensional (2D) electron gas at the heterointerface to the oxide-semiconductor interface has been demonstrated and explained. The effect occurs at high positive gate bias and manifests itself as an additional step in the capacitance-voltage (C‐V) characteristic. The real-space transfer effect limits the achievable maximum 2D electron gas density in the device channel. We show that in MOSH structures the maximum electron gas density exceeds up to two times that at the equilibrium (zero bias) condition. Correspondingly, a significant increase in the maximum channel current (up to …