Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

1995

Series

Digital Simulation

Articles 1 - 4 of 4

Full-Text Articles in Electrical and Computer Engineering

Fdtd Modeling Of Thin Wires For Simulating Common-Mode Radiation From Structures With Attached Cables, David M. Hockanson, James L. Drewniak, Todd H. Hubing, Thomas Van Doren Aug 1995

Fdtd Modeling Of Thin Wires For Simulating Common-Mode Radiation From Structures With Attached Cables, David M. Hockanson, James L. Drewniak, Todd H. Hubing, Thomas Van Doren

Electrical and Computer Engineering Faculty Research & Creative Works

The analysis of shielding enclosures is complicated by the existence of apertures and cables. The finite-difference time-domain (FDTD) method can model shielding enclosures with complex geometries, but has difficulty modeling wires and cables of arbitrary radii. Modeling the wire by setting the axial component of the electric field to zero in the FDTD results in a wire with a radius determined by the mesh discretisation. Neglecting wire radius in applications such as electromagnetic interference (EMI) or printed circuit board modeling may result in gross errors because near field quantities are typically sensitive to wire thickness. Taflove (1990) developed a wire …


The Multirate Simulation Of Facts Devices In Power System Dynamics, J. G. Chen, Mariesa Crow Jan 1995

The Multirate Simulation Of Facts Devices In Power System Dynamics, J. G. Chen, Mariesa Crow

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, the multirate method is applied to the problem of simulating the dynamics of a power system which contains fast components such as induction machine loads and FACTS devices. Results concerning the numerical stability and accuracy of the multirate method are presented. Implementation concerns are also addressed by studying an example power system which contains a wide range of time response behavior


Analysis Of A Current-Regulated Brushless Dc Drive, Keith Corzine, S. D. Sudhoff, H. J. Hegner Jan 1995

Analysis Of A Current-Regulated Brushless Dc Drive, Keith Corzine, S. D. Sudhoff, H. J. Hegner

Electrical and Computer Engineering Faculty Research & Creative Works

Current-regulated brushless DC machines are used in a wide variety of applications including robotics, actuators, electric vehicles, and ship propulsion systems. When conducting system analysis of this or any other type of drive, average-value reduced-order models are invaluable since they provide a means of rapidly predicting the electromechanical dynamics and are readily linearized for control system synthesis. In this paper, a highly accurate average-value reduced-order model of a hysteresis current-regulated brushless DC drive is set forth. In so doing it is demonstrated that the drive exhibits five distinct operating modes. The physical cause of each of these modes is explained …


A Flux-Weakening Strategy For Current-Regulated Surface-Mounted Permanent-Magnet Machine Drives, Keith Corzine, S. D. Sudhoff, H. J. Hegner Jan 1995

A Flux-Weakening Strategy For Current-Regulated Surface-Mounted Permanent-Magnet Machine Drives, Keith Corzine, S. D. Sudhoff, H. J. Hegner

Electrical and Computer Engineering Faculty Research & Creative Works

Permanent-magnet synchronous machines fed from current-regulated converters feature nearly ideal performance at low-to-moderate speeds. However, as rotor speed increases the back emf rises which results in loss of current regulation and decreased torque. In buried-magnet machine drives, flux weakening is often used to extend the speed range. This paper sets forth a flux-weakening control specifically designed for surface-mounted permanent-magnet machines which is simple and does not require knowledge of the machine or system parameters. The proposed method is demonstrated both experimentally and through the use of computer simulation