Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Electrical and Computer Engineering

A Stochastic Model For Crystal-Amorphous Transition In Low Temperature Molecular Beam Epitaxial Si(111), R. Venkatasubramanian, Suresh Gorantla, S. Muthuvenkatraman, Donald L. Dorsey Dec 1996

A Stochastic Model For Crystal-Amorphous Transition In Low Temperature Molecular Beam Epitaxial Si(111), R. Venkatasubramanian, Suresh Gorantla, S. Muthuvenkatraman, Donald L. Dorsey

Electrical & Computer Engineering Faculty Research

Molecular beam epitaxial Si (111) grown below a certain temperature result in amorphous structure due to the limited surface mobility of atoms in finding correct epitaxial sites. In spite of many experimental and theoretical studies, the mechanism of crystal‐amorphous transition and its dynamics related to the growth conditions are not well understood. In this article, we present a theoretical model based on the formation of stacking fault like defects as a precursor to the amorphous transition of the layer. The model is simulated based on a stochastic model approach and the results are compared to that of experiments for temperatures …


A Self-Consistent Numerical Method For Simulation Of Quantum Transport In High Electron Mobility Transistor; Part 1: The Boltzmann-Poisson-Schrodinger Solver, Rahim Khoie Jan 1996

A Self-Consistent Numerical Method For Simulation Of Quantum Transport In High Electron Mobility Transistor; Part 1: The Boltzmann-Poisson-Schrodinger Solver, Rahim Khoie

Electrical & Computer Engineering Faculty Research

A self-consistent Boltzmann-Poisson-Schrödinger solver for High Electron Mobility Transistor is presented. The quantization of electrons in the quantum well normal to the heterojunction is taken into account by solving the two higher moments of Boltzmann equation along with the Schrödinger and Poisson equations, self-consistently. The Boltzmann transport equation in the form of a current continuity equation and an energy balance equation are solved to obtain the transient and steady-state transport behavior. The numerical instability problems associated with the simulator are presented, and the criteria for smooth convergence of the solutions are discussed. The current-voltage characteristics, transconductance, gate capacitance, and unity-gain …


A Self-Consistent Numerical Method For Simulation Of Quantum Transport In High Electron Mobility Transistor; Part Ii: The Full Quantum Transport, Rahim Khoie Jan 1996

A Self-Consistent Numerical Method For Simulation Of Quantum Transport In High Electron Mobility Transistor; Part Ii: The Full Quantum Transport, Rahim Khoie

Electrical & Computer Engineering Faculty Research

In Part I of this paper we reported a self-consistent Boltzmann-Schrodinger-Poisson simulator for HEMT in which only electrons in the first subband were assumed to be quantized with their motion restricted to 2 dimensions. In that model, the electrons in the second and higher subbands were treated as bulk system behaving as a 3 dimensional electron gas. In Part II of this paper, we extend our simulator to a self-consistent full-quantum model in which the electrons in the second subband are also treated as quantized 2 dimensional gas. In this model, we consider the electrons in the lowest two subbands …