Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Purdue University

2013

Discipline
Keyword
Publication
Publication Type

Articles 1 - 30 of 72

Full-Text Articles in Electrical and Computer Engineering

Role Of Atomic Variability In Dielectric Charging: A First-Principles-Based Multiscale Modeling Study, Ravi Pramod Kumar Vedula, Sambit Palit, Muhammad A. Alam, Alejandro Strachan Nov 2013

Role Of Atomic Variability In Dielectric Charging: A First-Principles-Based Multiscale Modeling Study, Ravi Pramod Kumar Vedula, Sambit Palit, Muhammad A. Alam, Alejandro Strachan

Birck and NCN Publications

We present a dielectric charging model that combinesab initiocalculations of trap levels with a continuum-level transport model and apply it to interpret charging currents in amorphous silicon nitride. Density functional theory calculations on an ensemble of structures predict a distribution of electron trap levels up to 1.8 eV below the conduction band edge and provide insight into the physical trapping mechanisms. Incorporating this information in the continuum model, as opposed to the standard approach of a single adjustable trap level, not only leads to a more accurate description of experimental current transients in metal-insulator-metal capacitors, but also to a more …


Web-Based Visual Analytics For Social Media Data, Jun Xiang Tee, David S. Ebert Oct 2013

Web-Based Visual Analytics For Social Media Data, Jun Xiang Tee, David S. Ebert

The Summer Undergraduate Research Fellowship (SURF) Symposium

Social media data provides valuable information about different events, trends and happenings around the world. Visual data analysis tasks for social media data have large computational and storage space requirements. Due to these restrictions, subdivision of data analysis tools into several layers such as Data, Business Logic or Algorithms, and Presentation Layer is often necessary to make them accessible for variety of clients. On server side, social media data analysis algorithms can be implemented and published in the form of web services. Visual Interface can then be implemented in the form of thin clients that call these web services for …


An Approximation Method For Solving Complex Electromagnetics Problems Using The Volume Integral Equation, Ryan Nobis, Dan Jiao, Saad Omar Oct 2013

An Approximation Method For Solving Complex Electromagnetics Problems Using The Volume Integral Equation, Ryan Nobis, Dan Jiao, Saad Omar

The Summer Undergraduate Research Fellowship (SURF) Symposium

Solving complex electric field problems can lead researchers to a host of electronic characteristics about an inhomogeneous, complex object. However due to the complexity of these electric fields, a computer needs to be used in order to solve them. Due to the size of the matrices for some problems, methods for improving speed and performance for these algorithms are absolutely necessary. A Volume Integral Equation was used to solve the Electric Field Displacement, D, and approximate the differential term in this equation. The problem was next discretized using phasors, so that it can computationally be solved. Data used to form …


Finite-Difference Time-Domain Simulation Of Photovoltaic Structures Using A Graphical User Interface For Meep, Xin Tze Tee, Peter Bermel Oct 2013

Finite-Difference Time-Domain Simulation Of Photovoltaic Structures Using A Graphical User Interface For Meep, Xin Tze Tee, Peter Bermel

The Summer Undergraduate Research Fellowship (SURF) Symposium

There is a large and growing need for accurate full-wave optical simulations of complex systems such as photovoltaic (PV) cells, particularly at the nanoscale. A finite-difference time-domain tool known as MEEP offers this capability in principle, through C++ libraries and the Scheme programming language. For expert users, this approach has been quite successful, but there is also great interest from new and less frequent users in starting to use MEEP. In order to facilitate this process, we have developed a graphical user interface (GUI) for MEEP, geared toward simulation of 2D and 3D PV cell geometries, freely available through a …


Silver Oxide-Graphene Sensor For Hydrogen Peroxide, Austin D. Scherbarth, L Stanciu Oct 2013

Silver Oxide-Graphene Sensor For Hydrogen Peroxide, Austin D. Scherbarth, L Stanciu

The Summer Undergraduate Research Fellowship (SURF) Symposium

A nonenzymatic, amperometric sensor for Hydrogen Peroxide (H2O2) was designed by drop coating glassy carbon electrodes (GCEs) with Silver Oxide (Ag2O). Combining Ag2O with Graphene Oxide and a polymer, PEDOT, was also attempted in order to increase stability and electrochemical properties. Using metal oxides along with Graphene Oxide for sensors has been done quite a bit, but Ag2O itself has not been research extensively. So, in order to produce the best H2O2 sensor, the configuration of all components had to be optimized. Three different Ag2O …


Mems Lab Simulation Tool, Oluwatosin D. Adeosun, Sambit Palit, Ankit Jain, Muhammad A. Alam Oct 2013

Mems Lab Simulation Tool, Oluwatosin D. Adeosun, Sambit Palit, Ankit Jain, Muhammad A. Alam

The Summer Undergraduate Research Fellowship (SURF) Symposium

MEMS actuators have multiple design applications. Understanding their behavior as well as the ability to predict their actuation characteristics and voltage response is important when designing these actuators. In order to know these devices will behave, designers have to solve multiple analytical equations and experiments that can be very time consuming. Over the course of the summer a tool was created on nanoHUB that will allow users to enter information about a MEMS actuator and provide the voltage response of the actuator. To create the tool, scaling equations were first provided for various geometry configurations and the equations were next …


Synthesizing Bismuth Telluride Nanowires In A Large Scale And Investigating The Energy Filtering Effect By Blending Bismuth Telluride Nanowires And Silver Nanoparticle In Thermoelectrics, Henka Darsono, Haiyu Fang, Yue Wu Oct 2013

Synthesizing Bismuth Telluride Nanowires In A Large Scale And Investigating The Energy Filtering Effect By Blending Bismuth Telluride Nanowires And Silver Nanoparticle In Thermoelectrics, Henka Darsono, Haiyu Fang, Yue Wu

The Summer Undergraduate Research Fellowship (SURF) Symposium

More than 50% of the energy sources becomes “waste” energy generally dissipated to the atmosphere in the form of heat. Thermoelectric effect is a conversion of temperature difference to electric voltage and can be used to convert the wasted heat to useful work. Nanomaterials have great potentials in the field of thermoelectric effect since they have properties that can allow higher efficiency in converting this wasted heat to electricity as compared to bulk materials. The purpose of this project is to develop a method to synthesize bismuth telluride (Bi2Te3) nanowires on a large scale and incorporate …


Pvpanel Sim 2.0 – Pv Module Simulation With Improved Device Physics, Mario Rentería Piñón, Muhammad A. Alam Oct 2013

Pvpanel Sim 2.0 – Pv Module Simulation With Improved Device Physics, Mario Rentería Piñón, Muhammad A. Alam

The Summer Undergraduate Research Fellowship (SURF) Symposium

Efficiency is a crucial parameter to consider when fabricating thin film (TF) photovoltaic panels because there is a significant efficiency drop between lab scale cells and large modules. PVpanel Sim is a circuit simulation using SPICE tool which combines the effects of the major reasons of efficiency reduction, like shunt leakages and sheet resistance, with external factors like irradiance and the effects of shadowing in order to provide the user with a better understanding of how a solar panel would behave. For the current version of the tool a basic equivalent model for individual cells is used with ideal components, …


Stanford Stratified Structure Solver (S4) Simulation Tool, Chang Liu, Xufeng Wang, Peter Bermel Oct 2013

Stanford Stratified Structure Solver (S4) Simulation Tool, Chang Liu, Xufeng Wang, Peter Bermel

The Summer Undergraduate Research Fellowship (SURF) Symposium

The Stanford Stratified Structure Solver (S4) developed in 2012 allows for fast, accurate prediction of optical propagation through complex 3D structures. However, there have been two key challenges preventing wider use to date: the use of a specialized control language, and the difficulty of incorporating realistic materials parameters. In this project, both concerns have been addressed. We have constructed a graphical user interface as an alternative, using the open-source Rappture platform on nanoHUB. This has been combined with a comprehensive materials database known as PhotonicsDB, which incorporates materials optical data drawn from carefully vetted sources. An Octave script file was …


Assessing The Mvs Model For Nanotransistors, Siyang Liu, Xingshu Sun, Mark S. Lundstrom Oct 2013

Assessing The Mvs Model For Nanotransistors, Siyang Liu, Xingshu Sun, Mark S. Lundstrom

The Summer Undergraduate Research Fellowship (SURF) Symposium

A simple semi-empirical compact MOSFET model has been developed, which is called MIT virtual source (MVS) model. Compare to other model used in industry, MVS model requires only a few parameters, most of which can be directly obtained from experiment, and produce accurate results. One aim of this paper is to test the applicability of the MVS model to transistor made from MoS2 rather than silicon. Another target is to determine the sustainability of the MVS model under different transistor tests. To achieve these goals, the MVS model will be used to fit the experimental data on MoS2 …


Kinetic Monte Carlo Simulations, Jingyuan Liang, R. Edwin García, Ding-Wen (Tony) Chung, David Ely Oct 2013

Kinetic Monte Carlo Simulations, Jingyuan Liang, R. Edwin García, Ding-Wen (Tony) Chung, David Ely

The Summer Undergraduate Research Fellowship (SURF) Symposium

Kinetic Monte Carlo (kMC) is a set of scientific libraries designed to deploy kMC simulations intended to simulate the time evolution of some processes occurring in nature. kMC is currently allows the user to intuitively generate single component crystal lattices to simulate, post process, and visualize the kinetic Monte Carlo-based atomistic evolution of materials. kMC provides an interface to the Stochastic Parallel PARticle Kinetic Simulator (SPPARKS) [1] and is specifically designed to simulate individual atomic deposition (condensation) and dissolution (evaporation) events, while simultaneously tracking the surface and bulk crystallographic anisotropic diffusion. The main goal of this project is to create …


Thermophotovoltaic System Efficiency Simulation, Qingshuang Chen, Roman Shugayev, Peter Bermel Oct 2013

Thermophotovoltaic System Efficiency Simulation, Qingshuang Chen, Roman Shugayev, Peter Bermel

The Summer Undergraduate Research Fellowship (SURF) Symposium

Thermophotovoltaic (TPV) power systems, which convert heat into electricity using a photovoltaic diode to collect thermal radiation, have attracted increasing attention in recent work. It has recently been proposed that new optical structures such as photonic crystals can significantly improve the efficiency of these devices in two ways. First, the electronic bandgap of the TPV diode should match the photonic bandgap of the emitter, in order to ensure that the majority of emitted photons can be converted. Second, a photonic crystal short-pass optical filter can be added to the front of the TPV diode to send long wavelength photons back …


Thread Based Battery For Low Power E-Textile Applications, Pranav Laxmanan, Girish Chitnis, Rahim Rahimi, Babak Ziaie Oct 2013

Thread Based Battery For Low Power E-Textile Applications, Pranav Laxmanan, Girish Chitnis, Rahim Rahimi, Babak Ziaie

The Summer Undergraduate Research Fellowship (SURF) Symposium

Textile electronic systems, or e-textiles, are on the rise but their utility is limited by its power demand. Potential applications include point-of-care diagnostic systems that would enable medical monitoring at the site of care. A small, inexpensive, and easy to use battery would enhance the capabilities of e-textile. Here we propose a thread based battery that attempts to satisfy these requirements. The thread based battery uses chemistry similar to an alkaline battery. The fabrication process involves patterning of current collector (silver epoxy or carbon ink) followed by zinc electroplating and manganese dioxide deposition. Thread present in between these two electrodes …


An Ant-Based Sensor Measurement Data Gathering System, Bolun Zhang, Dimitrios Peroulis Oct 2013

An Ant-Based Sensor Measurement Data Gathering System, Bolun Zhang, Dimitrios Peroulis

The Summer Undergraduate Research Fellowship (SURF) Symposium

Large-scale industries involved with a great amount of sensor measurements in their work are facing many challenges in data collection. Sensors are not on the same network; therefore each measurement has to be managed separately. Gathering all the measurement data to one terminal could be difficult. Once a measurement is obtained, it takes significant amount of time to process the data.The approaches our group takes here is to build a giant ANT wireless network that holds all the sensors’ measurements. To be more specific, every sensor has an ANT chip set up on its side. Each ANT chip is as …


Case Studies In Admittance Spectroscopy, Christopher Gaytan, Mark S. Lundstrom Oct 2013

Case Studies In Admittance Spectroscopy, Christopher Gaytan, Mark S. Lundstrom

The Summer Undergraduate Research Fellowship (SURF) Symposium

Admittance Spectroscopy (AS) is a widely used technique to identify defects in semiconductor devices. The AS technique can determine the energy level, trap density, and cross section of a trap. The goal of the project is to develop a RAPPTURE tool on nanoHUB.org. The AS tool will help us to create a series of case studies which will illustrate how to analyze admittance spectroscopy data, supply users with a more efficient way to do AS analysis, and provide an easy solution to perform AS analysis with their own experimental data. For one of the case studies, we simulated an N …


A Quantitative Analysis Of A Paper-Based, Laser-Defined, Oxygen-Generating Platform For Chronic Wounds, Tiffany L. Huang, Babak Ziaie Oct 2013

A Quantitative Analysis Of A Paper-Based, Laser-Defined, Oxygen-Generating Platform For Chronic Wounds, Tiffany L. Huang, Babak Ziaie

The Summer Undergraduate Research Fellowship (SURF) Symposium

Chronic wounds affect 6.5 million patients a year while consuming US$25 billion in health care costs (Sen 2009 Wound Repair Regen.). Despite advances in wound management therapies, modern treatment for chronic wounds still requires continual professional attention and expensive equipment, posing serious practical and financial burdens for the regular patient. To provide an alternative solution, we are developing a low-cost smart bandage platform that integrates actuators and sensors to monitor and treat chronic wounds. One component of the integrated platform is an oxygen-generating module. It is a polydimethylsiloxane (PDMS) based microfluidic device fabricated on a parchment paper substrate that …


Experimental Investigation Of Ultrawideband Wireless Systems: Waveform Generation, Propagation Estimation, And Dispersion Compensation, Amir Dezfooliyan Oct 2013

Experimental Investigation Of Ultrawideband Wireless Systems: Waveform Generation, Propagation Estimation, And Dispersion Compensation, Amir Dezfooliyan

Open Access Dissertations

Ultrawideband (UWB) is an emerging technology for the future high-speed wireless communication systems. Although this technology offers several unique advantages like robustness to fading, large channel capacity and strong anti-jamming ability, there are a number of practical challenges which are topics of current research. One key challenge is the increased multipath dispersion which results because of the fine temporal resolution. The received response consists of different components, which have certain delays and attenuations due to the paths they took in their propagation from the transmitter to the receiver. Although such challenges have been investigated to some extent, they have not …


High-Power Microwave/ Radio-Frequency Components, Circuits, And Subsystems For Next-Generation Wireless Radio Front-Ends, Kenle Chen Oct 2013

High-Power Microwave/ Radio-Frequency Components, Circuits, And Subsystems For Next-Generation Wireless Radio Front-Ends, Kenle Chen

Open Access Dissertations

As the wireless communication systems evolve toward the future generation, intelligence will be the main signature/trend, well known as the concepts of cognitive and software-defined radios which offer ultimate data transmission speed, spectrum access, and user capacity. During this evolution, the human society may experience another round of `information revolution'. However, one of the major bottlenecks of this promotion lies in hardware realization, since all the aforementioned intelligent systems are required to cover a broad frequency range to support multiple communication bands and dissimilar standards. As the essential part of the hardware, power amplifiers (PAs) capable of operating over a …


Effects Of Hearing Aid Amplification On Robust Neural Coding Of Speech, Jonathan Daniel Boley Oct 2013

Effects Of Hearing Aid Amplification On Robust Neural Coding Of Speech, Jonathan Daniel Boley

Open Access Dissertations

Hearing aids are able to restore some hearing abilities for people with auditory impairments, but background noise remains a significant problem. Unfortunately, we know very little about how speech is encoded in the auditory system, particularly in impaired systems with prosthetic amplifiers. There is growing evidence that relative timing in the neural signals (known as spatiotemporal coding) is important for speech perception, but there is little research that relates spatiotemporal coding and hearing aid amplification.

This research uses a combination of computational modeling and physiological experiments to characterize how hearing aids affect vowel coding in noise at the level of …


Transmit Signal Design For Mimo Radar And Massive Mimo Channel Estimation, Andrew Jason Duly Oct 2013

Transmit Signal Design For Mimo Radar And Massive Mimo Channel Estimation, Andrew Jason Duly

Open Access Dissertations

The widespread availability of antenna arrays and the capability to independently control signal emissions from each antenna make transmit signal design increasingly important for radar and wireless communication systems. In the rst part of this work, we develop the framework for a MIMO radar transmit scheme which trades o waveform diversity for beampattern directivity. Time-division beamforming consists of a linear precoder that provides direct control of the transmit beampattern and is able to form multiple transmit beams in a single pulse. The MIMO receive ambiguity function, which incorporates the receiver structure, reveals a space and delay-Doppler separability that emphasizes the …


A Novel Multiblock Immersed Boundary Method Enabling High Order Large Eddy Simulation Of Pathological And Medical Device Hemodynamics, Anupindi Kameswararao Oct 2013

A Novel Multiblock Immersed Boundary Method Enabling High Order Large Eddy Simulation Of Pathological And Medical Device Hemodynamics, Anupindi Kameswararao

Open Access Dissertations

Computational fluid dynamics (CFD) simulations are becoming a reliable tool in understanding disease progression, investigating blood flow patterns and evaluating medical device performance such as stent grafts and mechanical heart valves. Previous studies indicate the presence of highly disturbed, transitional and mildly turbulent flow in healthy and pathological arteries. Accurate simulation of the transitional flow requires high order numerics together with a scale resolving turbulence model such as large eddy simulation (LES). This in turn limits one to use a structured fluid flow solver on which complex, branching arterial domains that are typical in the human blood circulatory system could …


Developing A Drug Delivery System For Treatment Of Vocal Fold Scarring, Aaron Michael Kosinski Oct 2013

Developing A Drug Delivery System For Treatment Of Vocal Fold Scarring, Aaron Michael Kosinski

Open Access Dissertations

Vocal fold scarring is an affliction that results in the formation of a disorganized and stiff extracellular matrix (ECM) with abnormal ECM component densities & structures including a significant increase in collagen deposition. It is caused by improper healing post injury and results in profound changes in the biomechanical properties of the vocal folds impairing their ability to generate a normal mucosal wave during phonation.

Finding an effective treatment for vocal fold scarring has been elusive. Currently, treatments seek temporary solutions that correct glottal incompetence and reduce stiffness caused by the scar through the augmentation of the vocal folds using …


Variation-Derived Chip Security And Accelerated Simulation Of Variations, William Paul Griffin Oct 2013

Variation-Derived Chip Security And Accelerated Simulation Of Variations, William Paul Griffin

Open Access Dissertations

In modern ICs, variations can be quite troublesome. Ensuring quality and yield requires careful and resource-intensive simulation under the effects of parameter variations. Threshold voltage approximation of parameter variations can help accelerate simulations, but it comes with unknown losses in quality. Instead, we propose a parameter reduction technique designed to minimize quality loss through careful analysis of the source transistor model and the set of input parameter variations. Using Pao-Sah's Double Integral model, we demonstrate the relative quality of our reduced parameter approach versus threshold voltage approximation.

Despite their negative role in circuitry, variations can be useful for security applications. …


Resource-Aware Distributed Particle Filtering For Cluster-Based Object Tracking In Wireless Camera Networks, Kihyun Hong Oct 2013

Resource-Aware Distributed Particle Filtering For Cluster-Based Object Tracking In Wireless Camera Networks, Kihyun Hong

Open Access Dissertations

The proliferation of miniaturized low-power computing devices, advances in wireless communications, and the availability of inexpensive imaging sensors have enabled the development of wireless camera networks (WCN). In this dissertation, we consider the problem of real-time object tracking with a WCN. Existing object tracking methods designed for multi-camera systems do not take into account the unique constraints of WCNs. Specifically, an effective object tracking system for WCNs must anticipate unreliable network communication, limited memory, and limited computational power in each camera node. In particular, unreliable communication degrades the quality of the visual information shared by the cameras, which ultimately degrades …


Electric Machine Differential For Vehicle Traction Control And Stability Control, Sandun Shivantha Kuruppu Oct 2013

Electric Machine Differential For Vehicle Traction Control And Stability Control, Sandun Shivantha Kuruppu

Open Access Dissertations

Evolving requirements in energy efficiency and tightening regulations for reliable electric drivetrains drive the advancement of the hybrid electric (HEV) and full electric vehicle (EV) technology. Different configurations of EV and HEV architectures are evaluated for their performance. The future technology is trending towards utilizing distinctive properties in electric machines to not only to improve efficiency but also to realize advanced road adhesion controls and vehicle stability controls. Electric machine differential (EMD) is such a concept under current investigation for applications in the near future. Reliability of a power train is critical. Therefore, sophisticated fault detection schemes are essential in …


Manifold Learning Based Spectral Unmixing Of Hyperspectral Remote Sensing Data, Jun-Hwa Chi Oct 2013

Manifold Learning Based Spectral Unmixing Of Hyperspectral Remote Sensing Data, Jun-Hwa Chi

Open Access Dissertations

Nonlinear mixing effects inherent in hyperspectral data are not properly represented in linear spectral unmixing models. Although direct nonlinear unmixing models provide capability to capture nonlinear phenomena, they are difficult to formulate and the results are not always generalizable. Manifold learning based spectral unmixing accommodates nonlinearity in the data in the feature extraction stage followed by linear mixing, thereby incorporating some characteristics of nonlinearity while retaining advantages of linear unmixing approaches. Since endmember selection is critical to successful spectral unmixing, it is important to select proper endmembers from the manifold space. However, excessive computational burden hinders development of manifolds for …


Research On Print Defect Visibility And Evaluation, Xiaochen Jing Oct 2013

Research On Print Defect Visibility And Evaluation, Xiaochen Jing

Open Access Dissertations

Banding is a well-known artifact produced by printing systems. It usually appears as lines perpendicular to the process direction of the print. Therefore, banding is an important print quality issue which has been analyzed and assessed by many researchers. However, little literature has focused on the study of the masking effect of content for this kind of print quality issue. Compared with other image and print quality research, our work is focused on the print quality of typical documents printed on a digital commercial printing press. In this paper, we propose a Masking Mediated Print Defect Visibility Predictor (MMPDVP) to …


Modeling The Atomic And Electronic Structure Of Metal-Metal, Metal-Semiconductor And Semiconductor-Oxide Interfaces, Ganesh Krishna Hegde Oct 2013

Modeling The Atomic And Electronic Structure Of Metal-Metal, Metal-Semiconductor And Semiconductor-Oxide Interfaces, Ganesh Krishna Hegde

Open Access Dissertations

The continuous downward scaling of electronic devices has renewed attention on the importance of the role of material interfaces in the functioning of key components in electronic technology in recent times. It has also brought into focus the utility of

atomistic modeling in providing insights from a materials design perspective. In this thesis, a combination of Semi Empirical Tight-Binding (TB), first-principles Density

Functional Theory and Reactive Molecular Dynamics (MD) modeling is used to study aspects of the electronic and atomic structure of three such 'canonical' material interfaces - Metal-Metal, Metal-Semiconductor and Semiconductor oxide interfaces.

An important contribution of this thesis …


Image Reconstruction For X-Ray Computed Tomography In Security Screening Applications, Sherman Jordan Kisner Oct 2013

Image Reconstruction For X-Ray Computed Tomography In Security Screening Applications, Sherman Jordan Kisner

Open Access Dissertations

X-ray tomographic systems have increasingly widespread use in security screening applications. For example, most major airports now utilize X-ray CT

systems for efficient screening of baggage and cargo. While decades of research has benefited CT for medical diagnostics, a number of practical differences in the security application present a new set of challenges for the reconstruction problem. For example, the size and composition of the scan subjects, the throughput requirements, and the measure of image quality are

all factors that lead to a different set of design considerations. This thesis investigates the application of model-based iterative reconstruction (MBIR) methods for …


Mispronunciation Detection For Language Learning And Speech Recognition Adaptation, Zhenhao Ge Oct 2013

Mispronunciation Detection For Language Learning And Speech Recognition Adaptation, Zhenhao Ge

Open Access Dissertations

The areas of "mispronunciation detection" (or "accent detection" more specifically) within the speech recognition community are receiving increased attention now. Two application areas, namely language learning and speech recognition adaptation, are largely driving this research interest and are the focal points of this work.

There are a number of Computer Aided Language Learning (CALL) systems with Computer Aided Pronunciation Training (CAPT) techniques that have been developed. In this thesis, a new HMM-based text-dependent mispronunciation system is introduced using text Adaptive Frequency Cepstral Coefficients (AFCCs). It is shown that this system outperforms the conventional HMM method based on Mel Frequency Cepstral …