Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Chinese Chemical Society | Xiamen University

Journal

2012

Cathode materials

Articles 1 - 2 of 2

Full-Text Articles in Electrical and Computer Engineering

Naf-M (M = Fe, Cu) Nanocomposites As Conversion Cathode Materials For Sodium Ion Batteries, Ting Li, Zhong-Xue Chen, Yu-Liang Cao, Han-Xi Yang Aug 2012

Naf-M (M = Fe, Cu) Nanocomposites As Conversion Cathode Materials For Sodium Ion Batteries, Ting Li, Zhong-Xue Chen, Yu-Liang Cao, Han-Xi Yang

Journal of Electrochemistry

The NaF-M (M = Fe, Cu) nanocomposites were prepared by high-energy ball milling using TiN grinding nanoparticles and investigated as cathode materials for sodium ion batteries. The experimental results demonstrated that NaF-Fe and NaF-Cu nanocomposites can go through electrochemical conversion reaction with Na+ uptake or removal, delivering a reversible capacity of ~ 150 mAh.g-1, even through a reversed conversion from initial discharged state to a charged state. These results reveal the possibility to realize a conversion reaction as long as NaF and elemental metal particles are intimately contacted to form active nanocomposites at nanodomain, which suggests a …


Preparation And Electrochemical Performance Of Lifepo4/C By Spray Drying Method Assisted With Organic Template, Quan-Bing Liu, Yang-Mei Jiang, Hui-Yu Song, Shi-Jun Liao Feb 2012

Preparation And Electrochemical Performance Of Lifepo4/C By Spray Drying Method Assisted With Organic Template, Quan-Bing Liu, Yang-Mei Jiang, Hui-Yu Song, Shi-Jun Liao

Journal of Electrochemistry

In this work, the LiFePO4/C composites were prepared by the spray drying and carbothermal method, and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge measurements. The effects of the organic assisted templates on the morphologies and electrochemical properties of the LiFePO4/C composites were investigated. The results showed that the morphology and microstructure of the composites could be tuned by incorporating with the different templates. The morphology of the composite appeared to be solid microspheres if no organic template was added, while porous microspheres, nest-like aggregation, and uniform nano-micro …