Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 38

Full-Text Articles in Electrical and Computer Engineering

Gnss Software Defined Radio: History, Current Developments, And Standardization Efforts, Thomas Pany, Dennis Akos, Javier Arribas, M. Zahidul H. Bhuiyan, Pau Closas, Fabio Dovis, Ignacio Fernandez-Hernandez, Carles Fernandez-Prades, Sanjeev Gunawardena, Todd Humphreys, Zaher M. Kassas, Jose A. Lopez Salcedo, Mario Nicola, Mario L. Psiaki, Alexander Rugamer, Yong-Jin Song, Jong-Hoon Won Jan 2024

Gnss Software Defined Radio: History, Current Developments, And Standardization Efforts, Thomas Pany, Dennis Akos, Javier Arribas, M. Zahidul H. Bhuiyan, Pau Closas, Fabio Dovis, Ignacio Fernandez-Hernandez, Carles Fernandez-Prades, Sanjeev Gunawardena, Todd Humphreys, Zaher M. Kassas, Jose A. Lopez Salcedo, Mario Nicola, Mario L. Psiaki, Alexander Rugamer, Yong-Jin Song, Jong-Hoon Won

Faculty Publications

Taking the work conducted by the global navigation satellite system (GNSS) software-defined radio (SDR) working group during the last decade as a seed, this contribution summarizes, for the first time, the history of GNSS SDR development. This report highlights selected SDR implementations and achievements that are available to the public or that influenced the general development of SDR. Aspects related to the standardization process of intermediate-frequency sample data and metadata are discussed, and an update of the Institute of Navigation SDR Standard is proposed. This work focuses on GNSS SDR implementations in general-purpose processors and leaves aside developments conducted on …


Ion Gnss Software-Defined Radio Metadata Standard, Sanjeev Gunawardena, Thomas Pany, James Curran Apr 2021

Ion Gnss Software-Defined Radio Metadata Standard, Sanjeev Gunawardena, Thomas Pany, James Curran

Faculty Publications

The past several years have seen a proliferation of software‐defined radio (SDR) data collection systems and processing platforms designed for or applicable to satellite navigation (satnav) applications. These systems necessarily produce datasets in a wide range of different formats. To correctly interpret this SDR data, essential information such as the packed sample format and sampling rate is needed. Communicating this metadata between creators and users has historically been an ad‐hoc, cumbersome, and error‐prone process. To address this issue, the satnav SDR community developed a metadata standard and normative software library to automate this process, thus simplifying the exchange of datasets …


Resilience For Multi-Filter All-Source Navigation Framework With Integrity, Jonathon S. Gipson, Robert C. Leishman Jan 2021

Resilience For Multi-Filter All-Source Navigation Framework With Integrity, Jonathon S. Gipson, Robert C. Leishman

Faculty Publications

The Autonomous and Resilient Management of All-source Sensors (ARMAS) framework monitors residual-space test statistics across unique sensor-exclusion banks of filters, (known as subfilters) to provide a resilient, fault-resistant all-source navigation architecture with assurance. A critical assumption of this architecture, demonstrated in this paper, is fully overlapping state observability across all subfilters. All-source sensors, particularly those that only provide partial state information (altimeters, TDoA, AOB, etc.) do not intrinsically meet this requirement.
This paper presents a novel method to monitor real-time overlapping position state observability and introduces an "observability bank" within the ARMAS framework, known as Stable Observability Monitoring (SOM). SOM …


Object Detection With Deep Learning To Accelerate Pose Estimation For Automated Aerial Refueling, Andrew T. Lee Mar 2020

Object Detection With Deep Learning To Accelerate Pose Estimation For Automated Aerial Refueling, Andrew T. Lee

Theses and Dissertations

Remotely piloted aircraft (RPAs) cannot currently refuel during flight because the latency between the pilot and the aircraft is too great to safely perform aerial refueling maneuvers. However, an AAR system removes this limitation by allowing the tanker to directly control the RP A. The tanker quickly finding the relative position and orientation (pose) of the approaching aircraft is the first step to create an AAR system. Previous work at AFIT demonstrates that stereo camera systems provide robust pose estimation capability. This thesis first extends that work by examining the effects of the cameras' resolution on the quality of pose …


Signal Quality Monitoring Of Gnss Signals Using A Chip Shape Deformation Metric, Nicholas C. Echeverry Mar 2020

Signal Quality Monitoring Of Gnss Signals Using A Chip Shape Deformation Metric, Nicholas C. Echeverry

Theses and Dissertations

The Global Navigation Satellite System continues to become deeply em-bedded within modern civilization, and is depended on for confident, accurate navigation information. High precision position and timing accuracy is typically achieved using differential processing, however these systems provide limited compensation for distortions caused by multi-path or faulty satellite hardware. Signal Quality Monitoring (SQM) aims to provide confidence in a receivers Position, Navigation, and Timing solution and to offer timely warnings in the event that signal conditions degrade to unsafe levels. The methods presented in this document focus on implementing effective SQM using low-cost Commercial Off-the-Shelf equipment, a Software Defined Radio, …


Improved Ground-Based Monocular Visual Odometry Estimation Using Inertially-Aided Convolutional Neural Networks, Josiah D. Watson Mar 2020

Improved Ground-Based Monocular Visual Odometry Estimation Using Inertially-Aided Convolutional Neural Networks, Josiah D. Watson

Theses and Dissertations

While Convolutional Neural Networks (CNNs) can estimate frame-to-frame (F2F) motion even with monocular images, additional inputs can improve Visual Odometry (VO) predictions. In this thesis, a FlowNetS-based [1] CNN architecture estimates VO using sequential images from the KITTI Odometry dataset [2]. For each of three output types (full six degrees of freedom (6-DoF), Cartesian translation, and transitional scale), a baseline network with only image pair input is compared with a nearly identical architecture that is also given an additional rotation estimate such as from an Inertial Navigation System (INS). The inertially-aided networks show an order of magnitude improvement over the …


An Analytic Study Of Pursuit Strategies, Mark E. Vlassakis Mar 2020

An Analytic Study Of Pursuit Strategies, Mark E. Vlassakis

Theses and Dissertations

The Two-on-One pursuit-evasion differential game is revisited where the holonomic players have equal speed, and the two pursuers are endowed with a circular capture range ℓ > 0. Then, the case where the pursuers' capture ranges are unequal, ℓ1 > ℓ2 ≥ 0, is analyzed. In both cases, the state space region where capture is guaranteed is delineated and the optimal feedback strategies are synthesized. Next, pure pursuit is considered whereupon the terminal separation between a pursuer and an equal-speed evader less than the pursuer's capture range ℓ > 0. The case with two pursuers employing pure pursuit is considered, and …


Verifying And Improving A Flight Reference System's Performance, Loren E. Myers Mar 2020

Verifying And Improving A Flight Reference System's Performance, Loren E. Myers

Theses and Dissertations

The 746th Test Squadron (746 TS) at Holloman AFB, NM operates the Ultra High Accuracy Reference System (UHARS) as part of its mission positioning and navigation test. This research presents a method for verifying the performance of a flight reference system using a Delta-Position velocity derived from radio navigation positioning measurements. The algorithm presented may utilize Global Positioning System (GPS) or the Locata ground based positioning system. In the latter case, Locata provides a velocity truth independent from GPS. The accuracy of Locata and GPS are assessed and UHARS velocity measurements are characterized both in nominal and GPS denied applications.


Magslam: Aerial Simultaneous Localization And Mapping Using Earth's Magnetic Anomaly Field, Taylor N. Lee, Aaron J. Canciani Jan 2020

Magslam: Aerial Simultaneous Localization And Mapping Using Earth's Magnetic Anomaly Field, Taylor N. Lee, Aaron J. Canciani

Faculty Publications

Instances of spoofing and jamming of global navigation satellite systems (GNSSs) have emphasized the need for alternative navigation methods. Aerial navigation by magnetic map matching has been demonstrated as a viable GNSS‐alternative navigation technique. Flight test demonstrations have achieved accuracies of tens of meters over hour‐long flights, but these flights required accurate magnetic maps which are not always available. Magnetic map availability and resolution vary widely around the globe. Removing the dependency on prior survey maps extends the benefits of aerial magnetic navigation methods to small unmanned aerial systems (sUAS) at lower altitudes where magnetic maps are especially undersampled or …


Magnetic Field Aided Indoor Navigation, William F. Storms Feb 2019

Magnetic Field Aided Indoor Navigation, William F. Storms

Theses and Dissertations

This research effort examines inertial navigation system aiding using magnetic field intensity data and a Kalman filter in an indoor environment. Many current aiding methods do not work well in an indoor environment, like aiding using the Global Positioning System. The method presented in this research uses magnetic field intensity data from a three-axis magnetometer in order to estimate position using a maximum – likelihood approach. The position measurements are then combined with a motion model using a Kalman filter. The magnetic field navigation algorithm is tested using a combination of simulated and real measurements. These tests are conducted using …


Real-Time Path Planning In Constrained, Uncertain Environments, Randall Christensen, Robert C. Leishman Jan 2019

Real-Time Path Planning In Constrained, Uncertain Environments, Randall Christensen, Robert C. Leishman

Faculty Publications

A key enabler of autonomous vehicles is the ability to plan the path of the vehicle to accomplish mission objectives. To be robust to realistic environments, path planners must account for uncertainty in the trajectory of the vehicle as well as uncertainty in the location of obstacles. The uncertainty in the trajectory of the vehicle is a difficult quantity to estimate, and is influenced by coupling between the vehicle dynamics, guidance, navigation, and control system as well as any disturbances acting on the vehicle. Monte Carlo analysis is the conventional approach to determine vehicle dispersion, while accounting for the coupled …


Cloud-Induced Uncertainty For Visual Navigation, Alyssa N. Gutierrez Dec 2014

Cloud-Induced Uncertainty For Visual Navigation, Alyssa N. Gutierrez

Theses and Dissertations

This research addresses the numerical distortion of features due to the presence of clouds in an image. The research aims to quantify the probability of a mismatch between two features in a single image, which will describe the likelihood that a visual navigation system incorrectly tracks a feature throughout an image sequence, leading to position miscalculations. First, an algorithm is developed for calculating transparency of clouds in images at the pixel level. The algorithm determines transparency based on the distance between each pixel color and the average pixel color of the clouds. The algorithm is used to create a dataset …


Gps Multipath Reduction With Correlator Beamforming, Jason M. Barhorst Mar 2014

Gps Multipath Reduction With Correlator Beamforming, Jason M. Barhorst

Theses and Dissertations

This research effort investigates the feasibility of beamforming using a single Global Positioning System (GPS) front end. Traditional methods of beamforming use multiple front ends, typically one per antenna element. By enabling a receiver to sample a switched antenna array, the hardware cost of implementing a GPS antenna array can be significantly reduced. Similar techniques of reducing the number of receivers have been used by Locata Corporation in the design of their non-GPS positioning systems. However, Locata Corporation's local transmitters provide a signal strength much higher than GPS's signal strength. For this reason, the inclusion of low-noise amplifiers into the …


Inertial Navigation System Aiding Using Vision, James O. Quarmyne Mar 2013

Inertial Navigation System Aiding Using Vision, James O. Quarmyne

Theses and Dissertations

The aiding of an INS using measurements over time of the line of sight of ground features as they come into view of an onboard camera is investigated. The objective is to quantify the reduction in the navigation states' errors by using bearings-only measurements over time of terrain features in the aircraft's field of view. INS aiding is achieved through the use of a Kalman Filter. The design of the Kalman Filter is presented and it is shown that during a long range, wings level cruising flight at constant velocity and altitude, a 90% reduction in the aided INS-calculated navigation …


Real-Time Heading Estimation Using Perspective Features, James W. Dean Mar 2013

Real-Time Heading Estimation Using Perspective Features, James W. Dean

Theses and Dissertations

There are a large number of commercially available quad-rotor helicopters available from various manufacturers. All of these systems rely on a low cost MEMS based inertial measurement system for stabilization and navigation. These low cost inertial systems are all subject to rapid error growth in their attitude and position estimates unless bounded by external measurements. This thesis created real-time algorithm to integrate measurements from visual cues with measurements from onboard sensors to estimate the attitude position and velocity of a quad-rotor helicopter in a local navigation frame, a system model for the ARDrone, and a feed-back controller for the vehicle's …


Information Encoding On A Pseudo Random Noise Radar Waveform, Joshua A . Hardin Mar 2013

Information Encoding On A Pseudo Random Noise Radar Waveform, Joshua A . Hardin

Theses and Dissertations

Navigation requires knowledge of current location and a planned destination. This is true with manned vehicles and unmanned vehicles. There are many ways to acquire the current location, including global positioning system (GPS), triangulation, radar, and dead reckoning. Today GPS is the most reliable and accurate navigation technique when there is a clear, unobstructed view of the satellite constellation. Various sensors can be used to perform indoor navigation; however, when the vehicle is autonomous the sensors need to provide the exact location to the system. This research determined if using a template replay strategy has the same RNR performance as …


Error Characterization Of Vision-Aided Navigation Systems, Daniel A . Marietta Mar 2013

Error Characterization Of Vision-Aided Navigation Systems, Daniel A . Marietta

Theses and Dissertations

The goal of this work is to characterize the errors committed by an Image Aided Navigation (IAN) algorithm that has been developed for use as a navigation tool in GPS denied areas. The filter under study was developed by the Air Force Institute of Technology's Advanced Navigation Technology center, and has been the focus of numerous research efforts. Unfortunately, these studies have all been based on single runs or simulations, and such results may not be indicative of the true filter performance. This problem extends to IAN publications in general; no analysis of IAN based upon a sizable real world …


Adaptations And Analysis Of The Afit Noise Radar Network For Indoor Navigation, Russell D. Wilson Iv Mar 2013

Adaptations And Analysis Of The Afit Noise Radar Network For Indoor Navigation, Russell D. Wilson Iv

Theses and Dissertations

After several years of development, the AFIT Noise Radar Network (NoNET) has proven to be an extremely versatile system for many standard radar functions. This pallet of capabilities includes through the wall target tracking capabilities due to its wide bandwidth and UHF operations. Utilizing White Gaussian Noise as its waveform, the NoNET can operate at much lower power levels than other comparable systems while remaining extremely covert. In an effort to explore new applications, the question arose could the NoNET provide a viable option for navigation capability in GPS denied and indoor environments? This research aims to provide proof of …


Radar Based Navigation In Unknown Terrain, Kyle J. Kauffman Dec 2012

Radar Based Navigation In Unknown Terrain, Kyle J. Kauffman

Theses and Dissertations

There is a great need to develop non-GPS based methods for positioning and navigation in situations where GPS is not available. This research focuses on the development of an Ultra-Wideband Orthogonal Frequency Division Multiplexed (UWB-OFDM) radar as a navigation sensor in GPS-denied environments. A side-looking vehicle-fixed UWB-OFDM radar is mounted to a ground or aerial vehicle continuously collecting data. A set of signal processing algorithms and methods are developed which use the raw radar data to aide in calculating the vehicle position and velocity via a simultaneous localization and mapping (SLAM) approach. The radar processing algorithms detect strong, persistent, and …


Signals Of Opportunity Navigation Using Wi-Fi Signals, Wilfred E. Noel Mar 2011

Signals Of Opportunity Navigation Using Wi-Fi Signals, Wilfred E. Noel

Theses and Dissertations

Since GPS is generally limited to areas with clear sky view, additional methods of navigation are currently being explored. This thesis explores navigation using Signals of Opportunity(SoOP). The signals chosen for evaluation in this thesis are the common Internet IEEE 802.11a/g signals, or Wi-Fi. This thesis presents SoOP navigation based on cross-correlations of received data from multiple Wi-Fi stations. It shows the effectiveness of the methods using collected Wi-Fi signals in a real-world environment. By using simple statistical representations of collected data in large groups, or windows, cross-correlation calculations can produce timing offsets between simulated stations. The timing offsets, or …


Global Navigation Satellite System Software Defined Radio, Jason M. Mcginthy Mar 2010

Global Navigation Satellite System Software Defined Radio, Jason M. Mcginthy

Theses and Dissertations

The GNSS world is quickly growing. The United States’ GPS, the European Union’s Galileo, China’s Compass, and Russia’s GLONASS systems are all developing or modernizing their signals, and there will soon be more navigation satellites in space than ever before. The goal of this research was to develop an initial capability for an AFIT GNSS software receiver. This software receiver is intended to be used for research purposes at the Advanced Navigation Technology (ANT) Center. First a GPS-only software receiver was built. It successfully acquired, tracked, and provided reasonable position estimates. Next, the receiver was successfully modified to acquire and …


Aiding Gps With Additional Satellite Navigation Services, Yasin A. Mutlu Mar 2010

Aiding Gps With Additional Satellite Navigation Services, Yasin A. Mutlu

Theses and Dissertations

In modern warfare navigation services are very important. GPS is currently providing service for accurate navigation, except in some areas, especially urban areas, where GPS signals cannot always be tracked by users. In these cases some additional navigation support could be provided by other global navigation satellite systems. If GPS is combined with other navigation systems than the navigation gap will be minor. In this thesis, the effect of combining GPS with other satellite navigation systems, specifically GLONASS, Galileo and Compass, is evaluated in terms of availability and position dilution of precision (PDOP) values. First, satellite constellations are simulated in …


The Navigation Potential Of Ground Feature Tracking, Guner Mutlu Sep 2009

The Navigation Potential Of Ground Feature Tracking, Guner Mutlu

Theses and Dissertations

This research effort examines the reduction of error in inertial navigation aided by vision. This is part of an effort focused on navigation in a GPS denied environment. The navigation concept examined here consists of two main steps. First, extract the position of a tracked ground object using vision and geo-locate it in 3 dimensional navigation frame. In this first step multiple positions of the UAV are assumed known; think of a synthetic aperture. The only information about the tracked ground objects/features is the unit vector that points to the objects from the center of the camera. Two such vectors …


Failure Detection Of A Pseudolite-Based Reference System Using Residual Monitoring, Michael A. Ciampa Mar 2009

Failure Detection Of A Pseudolite-Based Reference System Using Residual Monitoring, Michael A. Ciampa

Theses and Dissertations

The 746th TS uses a flight reference system referred to as the Central Inertial and GPS Test Facility (CIGTF) Reference System (CRS). Currently the CRS is the modern standard flight reference system for navigation testing, but high accuracy is dependent on the availability of GPS. A pseudolite system is currently being developed to augment the CRS and supply the capability to maintain high accuracy navigation under normal and jamming conditions. Pseudolite measurements typically contain cycle slips and other errors (such as multipath, tropospheric error, measurement noise) that can affect reliability. Past work relied on the receiver-reported signal-to-noise (SNR) value to …


Fusion Of Inertial Sensors And Orthogonal Frequency Division Multiplexed (Ofdm) Signals Of Opportunity For Unassisted Navigation, Jason G. Crosby Mar 2009

Fusion Of Inertial Sensors And Orthogonal Frequency Division Multiplexed (Ofdm) Signals Of Opportunity For Unassisted Navigation, Jason G. Crosby

Theses and Dissertations

The advent of the global positioning system (GPS) has provided worldwide high-accuracy position measurements. However, GPS may be rendered unavailable by jamming, disruption of satellites, or simply by signal shadowing in urban environments. Thus, this thesis considers fusion of Inertial Navigation Systems (INS) and Orthogonal Frequency Division Multiplexed (OFDM) signals of opportunity (SOOP) for navigation. Typical signal of opportunity navigation involves the use of a reference receiver and uses time difference of arrival (TDOA) measurements. However, by exploiting the block structure of OFDM communication signals, the need for the reference receiver is reduced or possibly removed entirely. This research uses …


Model-Based Control Using Model And Mechanization Fusion Techniques For Image-Aided Navigation, Constance D. Hendrix Mar 2009

Model-Based Control Using Model And Mechanization Fusion Techniques For Image-Aided Navigation, Constance D. Hendrix

Theses and Dissertations

Unmanned aerial vehicles are no longer used for just reconnaissance. Current requirements call for smaller autonomous vehicles that replace the human in high-risk activities. Many times these activities are performed in GPS-degraded environments. Without GPS providing today's most accurate navigation solution, autonomous navigation in tight areas is more difficult. Today, image-aided navigation is used and other methods are explored to more accurately navigate in such areas (e.g., indoors). This thesis explores the use of inertial measurements and navigation solution updates using cameras with a model-based Linear Quadratic Gaussian controller. To demonstrate the methods behind this research, the controller will provide …


Communication Free Robot Swarming, Zachary C. Gray Feb 2009

Communication Free Robot Swarming, Zachary C. Gray

Theses and Dissertations

As the military use of unmanned aerial vehicles increases, a growing need for novel strategies to control these systems exists. One such method for controlling many unmanned aerial vehicles simultaneously is the through the use of swarm algorithms. This research explores a swarm robotic algorithm developed by Kadrovach implemented on Pioneer Robots in a real-world environment. An adaptation of his visual sensor is implemented using stereo vision as the primary method of sensing the environment. The swarm members are prohibited from explicitly communicating other than passively through the environment. The resulting implementation produces a communication free swarming algorithm. The algorithm …


Automated Knowledge Generation With Persistent Surveillance Video, Daniel T. Schmitt Feb 2009

Automated Knowledge Generation With Persistent Surveillance Video, Daniel T. Schmitt

Theses and Dissertations

The Air Force has increasingly invested in persistent surveillance platforms gathering a large amount of surveillance video. Ordinarily, intelligence analysts watch the video to determine if suspicious activities are occurring. This approach to video analysis can be a very time and manpower intensive process. Instead, this thesis proposes that by using tracks generated from persistent video, we can build a model to detect events for an intelligence analyst. The event that we chose to detect was a suspicious surveillance activity known as a casing event. To test our model we used Global Positioning System (GPS) tracks generated from vehicles driving …


A Small-Scale 3d Imaging Platform For Algorithm Performance Evaluation, Steven A. James Jun 2007

A Small-Scale 3d Imaging Platform For Algorithm Performance Evaluation, Steven A. James

Theses and Dissertations

In recent years, world events have expedited the need for the design and application of rapidly deployable airborne surveillance systems in urban environments. Fast and effective use of the surveillance images requires accurate modeling of the terrain being surveyed. The process of accurately modeling buildings, landmarks, or other items of interest on the surface of the earth, within a short lead time, has proven to be a challenging task. One approach of high importance for countering this challenge and accurately reconstructing 3D objects is through the employment of airborne 3D image acquisition platforms. While developments in this arena have significantly …


Controller Design For Accurate Antenna Pointing Onboard A Spacecraft, Victor M. Barba Jun 2007

Controller Design For Accurate Antenna Pointing Onboard A Spacecraft, Victor M. Barba

Theses and Dissertations

Controller design for a spacecraft mounted flexible antenna is considered. The antenna plant model has a certain degree of uncertainty. Additionally, disturbances from the host spacecraft are transmitted to the antenna and need to be attenuated. The design concept explored herein entails feedforward control to slew the antenna. Feedback control is then used to compensate for plant uncertainty and to reject the disturbance signals. A tight control loop is designed to meet performance specifications while minimizing the control gains. Simulations are conducted to show that the integration of feedforward control action and feedback compensation produces better responses than the implementation …