Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Electrical and Computer Engineering

A Spline Framework For Optimal Representation Of Semiperiodic Signals, Farzin G. Guilak Jul 2015

A Spline Framework For Optimal Representation Of Semiperiodic Signals, Farzin G. Guilak

Dissertations and Theses

Semiperiodic signals possess an underlying periodicity, but their constituent spectral components include stochastic elements which make it impossible to analytically determine locations of the signal's critical points. Mathematically, a signal's critical points are those at which it is not differentiable or where its derivative is zero. In some domains they represent characteristic points, which are locations indicating important changes in the underlying process reflected by the signal.

For many applications in healthcare, knowledge of precise locations of these points provides key insight for analytic, diagnostic, and therapeutic purposes. For example, given an appropriate signal they might indicate the start or …


Performance Metrics For Depth-Based Signal Separation Using Deep Vertical Line Arrays, John K. Boyle Mar 2015

Performance Metrics For Depth-Based Signal Separation Using Deep Vertical Line Arrays, John K. Boyle

Dissertations and Theses

Vertical line arrays (VLAs) deployed below the critical depth in the deep ocean can exploit reliable acoustic path (RAP) propagation, which provides low transmission loss (TL) for targets at moderate ranges, and increased TL for distant interferers. However, sound from nearby surface interferers also undergoes RAP propagation, and without horizontal aperture, a VLA cannot separate these interferers from submerged targets. A recent publication by McCargar and Zurk (2013) addressed this issue, presenting a transform-based method for passive, depth-based separation of signals received on deep VLAs based on the depth-dependent modulation caused by the interference between the direct and surface-reflected acoustic …