Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Other Electrical and Computer Engineering

MODFETs

Articles 1 - 14 of 14

Full-Text Articles in Electrical and Computer Engineering

Gan-Algan Heterostructure Field-Effect Transistors Over Bulk Gan Substrates, M. Asif Khan, J. W. Yang, W. Knap, E. Frayssinet, X. Hu, Grigory Simin, P. Prystawko, M. Leszczynski, I. Grzegory, S. Porowski, R. Gaska, M. S. Shur, B. Beaumont, M. Teisseire, G. Neu Feb 2015

Gan-Algan Heterostructure Field-Effect Transistors Over Bulk Gan Substrates, M. Asif Khan, J. W. Yang, W. Knap, E. Frayssinet, X. Hu, Grigory Simin, P. Prystawko, M. Leszczynski, I. Grzegory, S. Porowski, R. Gaska, M. S. Shur, B. Beaumont, M. Teisseire, G. Neu

Grigory Simin

We report on AlGaN/GaN heterostructures and heterostructurefield-effect transistors(HFETs) fabricated on high-pressure-grown bulk GaN substrates. The 2delectron gas channel exhibits excellent electronic properties with room-temperature electron Hall mobility as high as μ=1650 cm2/V s combined with a very large electron sheet density ns≈1.4×1013 cm−2.The HFET devices demonstrated better linearity of transconductance and low gate leakage, especially at elevated temperatures. We also present the comparative study of high-current AlGaN/GaN HFETs(nsμ>2×1016 V−1 s−1) grown on bulk GaN, sapphire, and SiC substrates under the same conditions. We demonstrate that in …


Real-Space Electron Transfer In Iii-Nitride Metal-Oxide-Semiconductor-Heterojunction Structures, S. Saygi, A. Koudymov, V. Adivarahan, J. Yang, Grigory Simin, M. Asif Khan, J. Deng, R. Gaska, M. S. Shur Feb 2015

Real-Space Electron Transfer In Iii-Nitride Metal-Oxide-Semiconductor-Heterojunction Structures, S. Saygi, A. Koudymov, V. Adivarahan, J. Yang, Grigory Simin, M. Asif Khan, J. Deng, R. Gaska, M. S. Shur

Grigory Simin

The real-space transfer effect in a SiO2∕AlGaN∕GaN metal-oxide-semiconductor heterostructure (MOSH) from the two-dimensional (2D) electron gas at the heterointerface to the oxide-semiconductor interface has been demonstrated and explained. The effect occurs at high positive gate bias and manifests itself as an additional step in the capacitance-voltage (C‐V) characteristic. The real-space transfer effect limits the achievable maximum 2D electron gas density in the device channel. We show that in MOSH structures the maximum electron gas density exceeds up to two times that at the equilibrium (zero bias) condition. Correspondingly, a significant increase in the maximum channel current (up to …


Algan/Gan Metal-Oxide-Semiconductor Heterostructure Field-Effect Transistors On Sic Substrates, M. Asif Khan, X. Hu, A. Tarakji, Grigory Simin, J. Yang, R. Gaska, M. S. Shur Feb 2015

Algan/Gan Metal-Oxide-Semiconductor Heterostructure Field-Effect Transistors On Sic Substrates, M. Asif Khan, X. Hu, A. Tarakji, Grigory Simin, J. Yang, R. Gaska, M. S. Shur

Grigory Simin

We report on AlGaN/GaN metal–oxide–semiconductor heterostructurefield-effect transistors (MOS-HFETs) grown over insulating 4H–SiC substrates. We demonstrate that the dc and microwave performance of the MOS-HFETs is superior to that of conventional AlGaN/GaN HFETs, which points to the high quality of SiO2/AlGaNheterointerface. The MOS-HFETs could operate at positive gate biases as high as +10 V that doubles the channel current as compared to conventional AlGaN/GaN HFETs of a similar design. The gate leakage current was more than six orders of magnitude smaller than that for the conventional AlGaN/GaN HFETs. The MOS-HFETs exhibited stable operation at elevated temperatures up to 300 °Cwith excellent …


Mechanism Of Radio-Frequency Current Collapse In Gan-Algan Field-Effect Transistors, A. Tarakji, Grigory Simin, N. Ilinskaya, X. Hu, A. Kumar, A. Koudymov, J. Yang, M. Asif Khan, M. S. Shur, R. Gaska Feb 2015

Mechanism Of Radio-Frequency Current Collapse In Gan-Algan Field-Effect Transistors, A. Tarakji, Grigory Simin, N. Ilinskaya, X. Hu, A. Kumar, A. Koudymov, J. Yang, M. Asif Khan, M. S. Shur, R. Gaska

Grigory Simin

The mechanism of radio-frequency current collapse in GaN–AlGaN heterojunctionfield-effect transistors(HFETs) was investigated using a comparative study of HFET and metal–oxide–semiconductor HFET current–voltage (I–V) and transfer characteristics under dc and short-pulsed voltage biasing. Significant current collapse occurs when the gate voltage is pulsed, whereas under drain pulsing the I–V curves are close to those in steady-state conditions. Contrary to previous reports, we conclude that the transverse electric field across the wide-band-gap barrier layer separating the gate and the channel rather than the gate or surface leakage currents or high-field effects in the gate–drain spacing is responsible for the current collapse. We …


Induced Strain Mechanism Of Current Collapse In Algan/Gan Heterostructure Field-Effect Transistors, Grigory Simin, A. Koudymov, A. Tarakji, X. Hu, J. Yang, M. Asif Khan, M. S. Shur, R. Gaska Feb 2015

Induced Strain Mechanism Of Current Collapse In Algan/Gan Heterostructure Field-Effect Transistors, Grigory Simin, A. Koudymov, A. Tarakji, X. Hu, J. Yang, M. Asif Khan, M. S. Shur, R. Gaska

Grigory Simin

Gated transmission line model pattern measurements of the transient current–voltage characteristics of AlGaN/GaN heterostructurefield-effect transistors(HFETs) and metal–oxide–semiconductor HFETs were made to develop a phenomenological model for current collapse. Our measurements show that, under pulsed gate bias, the current collapse results from increased source–gate and gate–drain resistances but not from the channel resistance under the gate. We propose a model linking this increase in series resistances (and, therefore, the current collapse) to a decrease in piezoelectriccharge resulting from the gate bias-induced nonuniform strain in the AlGaN barrier layer.


Real-Space Electron Transfer In Iii-Nitride Metal-Oxide-Semiconductor-Heterojunction Structures, S. Saygi, A. Koudymov, V. Adivarahan, J. Yang, Grigory Simin, M. Asif Khan, J. Deng, R. Gaska, M. S. Shur Jul 2005

Real-Space Electron Transfer In Iii-Nitride Metal-Oxide-Semiconductor-Heterojunction Structures, S. Saygi, A. Koudymov, V. Adivarahan, J. Yang, Grigory Simin, M. Asif Khan, J. Deng, R. Gaska, M. S. Shur

Faculty Publications

The real-space transfer effect in a SiO2∕AlGaN∕GaN metal-oxide-semiconductor heterostructure (MOSH) from the two-dimensional (2D) electron gas at the heterointerface to the oxide-semiconductor interface has been demonstrated and explained. The effect occurs at high positive gate bias and manifests itself as an additional step in the capacitance-voltage (C‐V) characteristic. The real-space transfer effect limits the achievable maximum 2D electron gas density in the device channel. We show that in MOSH structures the maximum electron gas density exceeds up to two times that at the equilibrium (zero bias) condition. Correspondingly, a significant increase in the maximum channel current (up to …


Simulation Of Gate Lag And Current Collapse In Gallium Nitride Field-Effect Transistors, N. Braga, R. Mickevicius, R. Gaska, M. S. Shur, M. Asif Khan, Grigory Simin Nov 2004

Simulation Of Gate Lag And Current Collapse In Gallium Nitride Field-Effect Transistors, N. Braga, R. Mickevicius, R. Gaska, M. S. Shur, M. Asif Khan, Grigory Simin

Faculty Publications

Results of two-dimensional numerical simulations of gate lag and current collapse in GaN heterostructurefield-effect transistors are presented. Simulation results clearly show that current collapse takes place only if an enhanced trapping occurs under the gate edges. Hot electrons play an instrumental role in the collapse mechanism. The simulation results also link the current collapse with electrons spreading into the buffer layer and confirm that a better electron localization (as in a double heterostructurefield-effect transistor) can dramatically reduce current collapse.


Maximum Current In Nitride-Based Heterostructure Field-Effect Transistors, A. Koudymov, H. Fatima, Grigory Simin, J. Yang, M. Asif Khan, A. Tarakji, X. Hu, M. S. Shur, R. Gaska Apr 2002

Maximum Current In Nitride-Based Heterostructure Field-Effect Transistors, A. Koudymov, H. Fatima, Grigory Simin, J. Yang, M. Asif Khan, A. Tarakji, X. Hu, M. S. Shur, R. Gaska

Faculty Publications

We present experimental and modeling results on the gate-length dependence of the maximum current that can be achieved in GaN-based heterostructurefield-effect transistors(HFETs) and metal–oxide–semiconductor HFETs (MOSHFETs). Our results show that the factor limiting the maximum current in the HFETs is the forward gate leakage current. In the MOSHFETs, the gate leakage current is suppressed and the overflow of the two dimensional electron gas into the AlGaN barrier region becomes the most important factor limiting the maximum current. Therefore, the maximum current is substantially higher in MOSHFETs than in HFETs. The measured maximum current increases with a decrease in the gate …


Si3N4/Algan/Gan-Metal-Insulator-Semiconductor Heterostructure Field-Effect Transistors, X. Hu, A. Koudymov, Grigory Simin, J. Yang, M. Asif Khan, A. Tarakji, M. S. Shur, R. Gaska Oct 2001

Si3N4/Algan/Gan-Metal-Insulator-Semiconductor Heterostructure Field-Effect Transistors, X. Hu, A. Koudymov, Grigory Simin, J. Yang, M. Asif Khan, A. Tarakji, M. S. Shur, R. Gaska

Faculty Publications

We report on a metal–insulator–semiconductor heterostructurefield-effect transistor (MISHFET) using Si3N4 film simultaneously for channel passivation and as a gate insulator. This design results in increased radio-frequency (rf) powers by reduction of the current collapse and it reduces the gate leakage currents by four orders of magnitude. A MISHFET room temperature gate current of about 90 pA/mm increases to only 1000 pA/mm at ambient temperature as high as 300 °C. Pulsed measurements show that unlike metal–oxide–semiconductor HFETs and regular HFETs, in a Si3N4 MISHFET, the gate voltage amplitude required for current collapse is much higher …


Induced Strain Mechanism Of Current Collapse In Algan/Gan Heterostructure Field-Effect Transistors, Grigory Simin, A. Koudymov, A. Tarakji, X. Hu, J. Yang, M. Asif Khan, M. S. Shur, R. Gaska Oct 2001

Induced Strain Mechanism Of Current Collapse In Algan/Gan Heterostructure Field-Effect Transistors, Grigory Simin, A. Koudymov, A. Tarakji, X. Hu, J. Yang, M. Asif Khan, M. S. Shur, R. Gaska

Faculty Publications

Gated transmission line model pattern measurements of the transient current–voltage characteristics of AlGaN/GaN heterostructurefield-effect transistors(HFETs) and metal–oxide–semiconductor HFETs were made to develop a phenomenological model for current collapse. Our measurements show that, under pulsed gate bias, the current collapse results from increased source–gate and gate–drain resistances but not from the channel resistance under the gate. We propose a model linking this increase in series resistances (and, therefore, the current collapse) to a decrease in piezoelectriccharge resulting from the gate bias-induced nonuniform strain in the AlGaN barrier layer.


Mechanism Of Radio-Frequency Current Collapse In Gan-Algan Field-Effect Transistors, A. Tarakji, Grigory Simin, N. Ilinskaya, X. Hu, A. Kumar, A. Koudymov, J. Yang, M. Asif Khan, M. S. Shur, R. Gaska Apr 2001

Mechanism Of Radio-Frequency Current Collapse In Gan-Algan Field-Effect Transistors, A. Tarakji, Grigory Simin, N. Ilinskaya, X. Hu, A. Kumar, A. Koudymov, J. Yang, M. Asif Khan, M. S. Shur, R. Gaska

Faculty Publications

The mechanism of radio-frequency current collapse in GaN–AlGaN heterojunctionfield-effect transistors(HFETs) was investigated using a comparative study of HFET and metal–oxide–semiconductor HFET current–voltage (I–V) and transfer characteristics under dc and short-pulsed voltage biasing. Significant current collapse occurs when the gate voltage is pulsed, whereas under drain pulsing the I–V curves are close to those in steady-state conditions. Contrary to previous reports, we conclude that the transverse electric field across the wide-band-gap barrier layer separating the gate and the channel rather than the gate or surface leakage currents or high-field effects in the gate–drain spacing is responsible for the current collapse. We …


Effect Of Gate Leakage Current On Noise Properties Of Algan/Gan Field Effect Transistors, S. L. Rumyantsev, N. Pala, M. S. Shur, R. Gaska, M. E. Levinshtein, M. Asif Khan, Grigory Simin, X. Hu, J. Yang Dec 2000

Effect Of Gate Leakage Current On Noise Properties Of Algan/Gan Field Effect Transistors, S. L. Rumyantsev, N. Pala, M. S. Shur, R. Gaska, M. E. Levinshtein, M. Asif Khan, Grigory Simin, X. Hu, J. Yang

Faculty Publications

The effect of the gate leakage current fluctuations on noiseproperties of AlGaN/GaN heterostructurefield effect transistors(HFETs) has been studied in conventional HFET structures and in AlGaN/GaN metal-oxide-semiconductorheterostructurefield effect transistors (MOS-HFETs). The comparison of the noiseproperties of conventional AlGaN/GaN HFETs and AlGaN/GaN MOS-HFETs fabricated on the same wafer, allowed us to estimate the contribution of the gate currentnoise to the HFET’s output noise. The effect of the gate current fluctuations on output noiseproperties of HFETs depends on the level of noise in the AlGaN/GaN HFETs. For the transistors with a relatively high magnitude of the Hooge parameter α∼10−3, even a …


Algan/Gan Metal-Oxide-Semiconductor Heterostructure Field-Effect Transistors On Sic Substrates, M. Asif Khan, X. Hu, A. Tarakji, Grigory Simin, J. Yang, R. Gaska, M. S. Shur Aug 2000

Algan/Gan Metal-Oxide-Semiconductor Heterostructure Field-Effect Transistors On Sic Substrates, M. Asif Khan, X. Hu, A. Tarakji, Grigory Simin, J. Yang, R. Gaska, M. S. Shur

Faculty Publications

We report on AlGaN/GaN metal–oxide–semiconductor heterostructurefield-effect transistors (MOS-HFETs) grown over insulating 4H–SiC substrates. We demonstrate that the dc and microwave performance of the MOS-HFETs is superior to that of conventional AlGaN/GaN HFETs, which points to the high quality of SiO2/AlGaNheterointerface. The MOS-HFETs could operate at positive gate biases as high as +10 V that doubles the channel current as compared to conventional AlGaN/GaN HFETs of a similar design. The gate leakage current was more than six orders of magnitude smaller than that for the conventional AlGaN/GaN HFETs. The MOS-HFETs exhibited stable operation at elevated temperatures up to 300 …


Gan-Algan Heterostructure Field-Effect Transistors Over Bulk Gan Substrates, M. Asif Khan, J. W. Yang, W. Knap, E. Frayssinet, X. Hu, Grigory Simin, P. Prystawko, M. Leszczynski, I. Grzegory, S. Porowski, R. Gaska, M. S. Shur, B. Beaumont, M. Teisseire, G. Neu Jun 2000

Gan-Algan Heterostructure Field-Effect Transistors Over Bulk Gan Substrates, M. Asif Khan, J. W. Yang, W. Knap, E. Frayssinet, X. Hu, Grigory Simin, P. Prystawko, M. Leszczynski, I. Grzegory, S. Porowski, R. Gaska, M. S. Shur, B. Beaumont, M. Teisseire, G. Neu

Faculty Publications

We report on AlGaN/GaN heterostructures and heterostructurefield-effect transistors(HFETs) fabricated on high-pressure-grown bulk GaN substrates. The 2delectron gas channel exhibits excellent electronic properties with room-temperature electron Hall mobility as high as μ=1650 cm2/V s combined with a very large electron sheet density ns≈1.4×1013 cm−2.The HFET devices demonstrated better linearity of transconductance and low gate leakage, especially at elevated temperatures. We also present the comparative study of high-current AlGaN/GaN HFETs(nsμ>2×1016 V−1 s−1) grown on bulk GaN, sapphire, and SiC substrates under the same conditions. We demonstrate that in …