Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Other Electrical and Computer Engineering

III-V semiconductors

Articles 1 - 10 of 10

Full-Text Articles in Electrical and Computer Engineering

Optical Bandgap Formation In Alingan Alloys, G. Tamulaitis, K. Kazlauskas, S. Juršėnas, A. Žukauskas, M. A. Khan, J. W. Yang, J. Zhang, Grigory Simin, M. S. Shur, R. Gaska Feb 2015

Optical Bandgap Formation In Alingan Alloys, G. Tamulaitis, K. Kazlauskas, S. Juršėnas, A. Žukauskas, M. A. Khan, J. W. Yang, J. Zhang, Grigory Simin, M. S. Shur, R. Gaska

Grigory Simin

We report on the spectral dynamics of the reflectivity, site-selectively excited photoluminescence,photoluminescence excitation, and time-resolved luminescence in quaternary AlInGaN epitaxial layers grown on GaN templates. The incorporation of a few percents of In into AlGaN causes significant smoothening of the band-bottom potential profile in AlInGaN layers owing to improved crystal quality. An abrupt optical bandgap indicates that a nearly lattice-matched AlInGaN/GaN heterostructure with large energy band offsets can be grown for high-efficiency light-emitting devices.


Indium-Silicon Co-Doping Of High-Aluminum-Content Algan For Solar Blind Photodetectors, V. Adivarahan, Grigory Simin, G. Tamulaitis, R. Srinivasan, J. Yang, M. Asif Khan, M. S. Shur, R. Gaska Feb 2015

Indium-Silicon Co-Doping Of High-Aluminum-Content Algan For Solar Blind Photodetectors, V. Adivarahan, Grigory Simin, G. Tamulaitis, R. Srinivasan, J. Yang, M. Asif Khan, M. S. Shur, R. Gaska

Grigory Simin

We report on an indium–silicon co-doping approach for high-Al-content AlGaN layers. Using this approach, very smooth crack-free n-type AlGaN films as thick as 0.5 μm with Al mole fraction up to 40% were grown over sapphire substrates. The maximum electron concentration in the layers, as determined by Hall measurements, was as high as 8×1017 cm−3 and the Hall mobility was up to 40 cm2/Vs. We used this doping technique to demonstrate solar-blind transparent Schottky barrierphotodetectors with the cut-off wavelength of 278 nm.


Algan/Gan Metal-Oxide-Semiconductor Heterostructure Field-Effect Transistors On Sic Substrates, M. Asif Khan, X. Hu, A. Tarakji, Grigory Simin, J. Yang, R. Gaska, M. S. Shur Feb 2015

Algan/Gan Metal-Oxide-Semiconductor Heterostructure Field-Effect Transistors On Sic Substrates, M. Asif Khan, X. Hu, A. Tarakji, Grigory Simin, J. Yang, R. Gaska, M. S. Shur

Grigory Simin

We report on AlGaN/GaN metal–oxide–semiconductor heterostructurefield-effect transistors (MOS-HFETs) grown over insulating 4H–SiC substrates. We demonstrate that the dc and microwave performance of the MOS-HFETs is superior to that of conventional AlGaN/GaN HFETs, which points to the high quality of SiO2/AlGaNheterointerface. The MOS-HFETs could operate at positive gate biases as high as +10 V that doubles the channel current as compared to conventional AlGaN/GaN HFETs of a similar design. The gate leakage current was more than six orders of magnitude smaller than that for the conventional AlGaN/GaN HFETs. The MOS-HFETs exhibited stable operation at elevated temperatures up to 300 °Cwith excellent …


Low Frequency Noise In Gan Metal Semiconductor And Metal Oxide Semiconductor Field Effect Transistors, S. L. Rumyantsev, N. Pala, M. S. Shur, R. Gaska, M. E. Levinshtein, M. Asif Khan, Grigory Simin, X. Hu, J. Yang Feb 2015

Low Frequency Noise In Gan Metal Semiconductor And Metal Oxide Semiconductor Field Effect Transistors, S. L. Rumyantsev, N. Pala, M. S. Shur, R. Gaska, M. E. Levinshtein, M. Asif Khan, Grigory Simin, X. Hu, J. Yang

Grigory Simin

The low frequency noise in GaNfield effect transistors has been studied as function of drain and gate biases. The noise dependence on the gate bias points out to the bulk origin of the low frequency noise. The Hooge parameter is found to be around 2×10−3 to 3×10−3.Temperature dependence of the noise reveals a weak contribution of generation–recombination noise at elevated temperatures.


Indium-Silicon Co-Doping Of High-Aluminum-Content Algan For Solar Blind Photodetectors, V. Adivarahan, Grigory Simin, G. Tamulaitis, R. Srinivasan, J. Yang, M. Asif Khan, M. S. Shur, R. Gaska Sep 2001

Indium-Silicon Co-Doping Of High-Aluminum-Content Algan For Solar Blind Photodetectors, V. Adivarahan, Grigory Simin, G. Tamulaitis, R. Srinivasan, J. Yang, M. Asif Khan, M. S. Shur, R. Gaska

Faculty Publications

We report on an indium–silicon co-doping approach for high-Al-content AlGaN layers. Using this approach, very smooth crack-free n-type AlGaN films as thick as 0.5 μm with Al mole fraction up to 40% were grown over sapphire substrates. The maximum electron concentration in the layers, as determined by Hall measurements, was as high as 8×1017 cm−3 and the Hall mobility was up to 40 cm2/Vs. We used this doping technique to demonstrate solar-blind transparent Schottky barrierphotodetectors with the cut-off wavelength of 278 nm.


Low Frequency Noise In Gan Metal Semiconductor And Metal Oxide Semiconductor Field Effect Transistors, S. L. Rumyantsev, N. Pala, M. S. Shur, R. Gaska, M. E. Levinshtein, M. Asif Khan, Grigory Simin, X. Hu, J. Yang Jul 2001

Low Frequency Noise In Gan Metal Semiconductor And Metal Oxide Semiconductor Field Effect Transistors, S. L. Rumyantsev, N. Pala, M. S. Shur, R. Gaska, M. E. Levinshtein, M. Asif Khan, Grigory Simin, X. Hu, J. Yang

Faculty Publications

The low frequency noise in GaNfield effect transistors has been studied as function of drain and gate biases. The noise dependence on the gate bias points out to the bulk origin of the low frequency noise. The Hooge parameter is found to be around 2×10−3 to 3×10−3.Temperature dependence of the noise reveals a weak contribution of generation–recombination noise at elevated temperatures.


Band-Edge Luminesce In Quaternary Alingan Light-Emitting Diodes, M. Shatalov, A. Chitnis, V. Adivarahan, A. Lunev, J. Zhang, J. W. Yang, Q. Fareed, Grigory Simin, A. Zakheim, M. Asif Khan, R. Gaska, M. S. Shur Feb 2001

Band-Edge Luminesce In Quaternary Alingan Light-Emitting Diodes, M. Shatalov, A. Chitnis, V. Adivarahan, A. Lunev, J. Zhang, J. W. Yang, Q. Fareed, Grigory Simin, A. Zakheim, M. Asif Khan, R. Gaska, M. S. Shur

Faculty Publications

Operation of InGaNmultiple-quantum-well(MQW)light-emitting diodes(LEDs) with quaternary AlInGaN barriers at room and elevated temperatures is reported. The devices outperform conventional GaN/InGaN MQWLEDs, especially at high pump currents. From the measurements of quantum efficiency and total emitted power under dc and pulsed pumping, we show the emission mechanism for quaternary barrier MQWs to be predominantly linked to band-to-band transitions. This is in contrast to localized state emission observed for conventional InGaN/InGaN and GaN/InGaN LEDs. The band-to-band recombination with an increased quantum-well depth improves the high-current performance of the quaternary barrier MQWLEDs, making them attractive for high-power solid-state lighting applications.


Optical Bandgap Formation In Alingan Alloys, G. Tamulaitis, K. Kazlauskas, S. Juršėnas, A. Žukauskas, M. A. Khan, J. W. Yang, J. Zhang, Grigory Simin, M. S. Shur, R. Gaska Oct 2000

Optical Bandgap Formation In Alingan Alloys, G. Tamulaitis, K. Kazlauskas, S. Juršėnas, A. Žukauskas, M. A. Khan, J. W. Yang, J. Zhang, Grigory Simin, M. S. Shur, R. Gaska

Faculty Publications

We report on the spectral dynamics of the reflectivity, site-selectively excited photoluminescence,photoluminescence excitation, and time-resolved luminescence in quaternary AlInGaN epitaxial layers grown on GaN templates. The incorporation of a few percents of In into AlGaN causes significant smoothening of the band-bottom potential profile in AlInGaN layers owing to improved crystal quality. An abrupt optical bandgap indicates that a nearly lattice-matched AlInGaN/GaN heterostructure with large energy band offsets can be grown for high-efficiency light-emitting devices.


Algan/Gan Metal-Oxide-Semiconductor Heterostructure Field-Effect Transistors On Sic Substrates, M. Asif Khan, X. Hu, A. Tarakji, Grigory Simin, J. Yang, R. Gaska, M. S. Shur Aug 2000

Algan/Gan Metal-Oxide-Semiconductor Heterostructure Field-Effect Transistors On Sic Substrates, M. Asif Khan, X. Hu, A. Tarakji, Grigory Simin, J. Yang, R. Gaska, M. S. Shur

Faculty Publications

We report on AlGaN/GaN metal–oxide–semiconductor heterostructurefield-effect transistors (MOS-HFETs) grown over insulating 4H–SiC substrates. We demonstrate that the dc and microwave performance of the MOS-HFETs is superior to that of conventional AlGaN/GaN HFETs, which points to the high quality of SiO2/AlGaNheterointerface. The MOS-HFETs could operate at positive gate biases as high as +10 V that doubles the channel current as compared to conventional AlGaN/GaN HFETs of a similar design. The gate leakage current was more than six orders of magnitude smaller than that for the conventional AlGaN/GaN HFETs. The MOS-HFETs exhibited stable operation at elevated temperatures up to 300 …


Lattice And Energy Band Engineering In Alingan/Ga Heterostructures, M. Asif Khan, J. W. Yang, Grigory Simin, R. Gaska, M. S. Shur, Hans-Conrad Zur Loye, G. Tamulaitis, A. Zukauskas, David J. Smith, D. Chandrasekhar, R. Bicknell-Tassius Feb 2000

Lattice And Energy Band Engineering In Alingan/Ga Heterostructures, M. Asif Khan, J. W. Yang, Grigory Simin, R. Gaska, M. S. Shur, Hans-Conrad Zur Loye, G. Tamulaitis, A. Zukauskas, David J. Smith, D. Chandrasekhar, R. Bicknell-Tassius

Faculty Publications

We report on structural, optical, and electrical properties of AlxInyGa1−x−yNGaNheterostructures grown on sapphire and 6H–SiC substrates. Our results demonstrate that incorporation of In reduces the lattice mismatch, Δa, between AlInGaN and GaN, and that an In to Al ratio of close to 1:5 results in nearly strain-free heterostructures. The observed reduction in band gap,ΔEg, determined from photoluminescence measurements, is more than 1.5 times higher than estimated from the linear dependencies of Δa and ΔEg on the In molar fraction. The incorporation of In and resulting changes in the built-in strain in …