Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Other Electrical and Computer Engineering

Applied sciences

Louisiana Tech University

Publication Year

Articles 1 - 6 of 6

Full-Text Articles in Electrical and Computer Engineering

Understanding The Surface Fouling Mechanism Of Ultrananocrystalline Diamond Microelectrodes Using Microfluidics For Neurochemical Detection, An-Yi Chang Jul 2017

Understanding The Surface Fouling Mechanism Of Ultrananocrystalline Diamond Microelectrodes Using Microfluidics For Neurochemical Detection, An-Yi Chang

Doctoral Dissertations

Electrochemical methods are widely used for chronic neurochemical sensing, but thus far, the organic solution redox reactions fouled the electrodes' surface. It caused the reduction of sensitivity and the electrodes' lifetime.

Here, we present the boron-doped nanocrystalline diamond microelectrodes (BDUNCD) as the next generation electrode material for neurochemical sensor development. To aid in long-term chronic monitoring of neurochemicals, they have a wide window of electrochemical potential, extremely low background current, and excellent chemical inertness. The main research goal is to reduce the rate of electrode fouling due to the reaction by-products, and significantly extend their useful lifetime.

We systematically characterize …


Electrochemical Behavior Of Dense Electrodes For Impedancemetric Nox Sensors, Nabamita Pal Jul 2017

Electrochemical Behavior Of Dense Electrodes For Impedancemetric Nox Sensors, Nabamita Pal

Doctoral Dissertations

NOx (NO and NO2) exhaust gas sensors for diesel powered vehicles have traditionally consisted of porous platinum (Pt) electrodes along with a dense ZrO2 based electrolyte. Advancement in diesel engine technology results in lower NOx emissions. Although Pt is chemically and mechanically tolerant to the extreme exhaust gas environment, it is also a strong catalyst for oxygen reduction, which can interfere with the detection of NOx at concentrations below 100 ppm. Countering this behavior can add to the complexity and cost of the conventional NO x sensor design. Recent studies have shown that dense electrodes are less prone to heterogeneous …


Stretching The Limits Of Dynamic Range, Shielding Effectiveness, And Multiband Frequency Response, Matthew J. Hartmann Jul 2017

Stretching The Limits Of Dynamic Range, Shielding Effectiveness, And Multiband Frequency Response, Matthew J. Hartmann

Doctoral Dissertations

In this dissertation, an RF MEMS variable capacitor suitable for applications requiring ultrawide capacitive tuning ranges is reported. The device uses an electrostatically tunable liquid dielectric interface to continuously vary the capacitance without the use of any moving parts. As compared to existing MEMS varactors in literature, this device has an extremely simple design that can be implemented using simple fabrication methods that do not necessitate the use of clean room equipment. In addition, this varactor is particularly suited for incorporating a wide range of liquid dielectric materials for specific tuning ratio requirements.

Additionally, the shielding effectiveness performance of graphene-doped …


Design, Modeling, Fabrication, And Testing Of A Multistage Micro Gas Compressor With Piezoelectric Unimorph Diaphragm And Passive Microvalves For Microcooling Applications, Shawn Thanhson Le Jan 2017

Design, Modeling, Fabrication, And Testing Of A Multistage Micro Gas Compressor With Piezoelectric Unimorph Diaphragm And Passive Microvalves For Microcooling Applications, Shawn Thanhson Le

Doctoral Dissertations

This dissertation investigates the development of a multistage micro gas compressor utilizing multiple pump stages cascaded in series to increase the pressure rise with passive microvalves and piezoelectric unimorph diaphragms. This research was conducted through modeling, simulation, design, and fabrication of the microcompressor and its components. A single-stage and a two-stage microcompressor were developed to demonstrate and compare the performance and effectiveness of using a cascaded multistage design.

Steady fluid flow through static microvalves structure was studied to gain insight on its gas flow dynamics and characteristics. Transient analysis combined with the structure's interaction was investigated with an analytical model …


Kinetics Of Laser Chemical Vapor Deposition Of Carbon And Refractory Metals, Feng Gao Apr 2000

Kinetics Of Laser Chemical Vapor Deposition Of Carbon And Refractory Metals, Feng Gao

Doctoral Dissertations

Three-dimensional laser chemical vapor deposition (3D-LCVD) has been used to grow rods of carbon, tungsten, titanium, and hafnium from a variety of hydrocarbons and metal halide-based precursors. A novel computerized 3D-LCVD system was designed and successfully used in the experiments. A focused Nd:Yag laser beam (λ = 1.06 μm) was utilized to locally heat up a substrate to deposition temperature. The rods, which grew along the axis of the laser beam, had a typical diameter of 30–80 μm and a length of about 1 mm. The precursors for carbon deposition were the alkynes: propyne, butyne, pentyne, hexyne, and octyne. Propyne …


Bottom-Up Design Of Artificial Neural Network For Single-Lead Electrocardiogram Beat And Rhythm Classification, Srikanth Thiagarajan Jan 2000

Bottom-Up Design Of Artificial Neural Network For Single-Lead Electrocardiogram Beat And Rhythm Classification, Srikanth Thiagarajan

Doctoral Dissertations

Performance improvement in computerized Electrocardiogram (ECG) classification is vital to improve reliability in this life-saving technology. The non-linearly overlapping nature of the ECG classification task prevents the statistical and the syntactic procedures from reaching the maximum performance. A new approach, a neural network-based classification scheme, has been implemented in clinical ECG problems with much success. The focus, however, has been on narrow clinical problem domains and the implementations lacked engineering precision. An optimal utilization of frequency information was missing. This dissertation attempts to improve the accuracy of neural network-based single-lead (lead-II) ECG beat and rhythm classification. A bottom-up approach defined …