Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Other Electrical and Computer Engineering

PDF

2001

III-V semiconductors

Articles 1 - 3 of 3

Full-Text Articles in Electrical and Computer Engineering

Indium-Silicon Co-Doping Of High-Aluminum-Content Algan For Solar Blind Photodetectors, V. Adivarahan, Grigory Simin, G. Tamulaitis, R. Srinivasan, J. Yang, M. Asif Khan, M. S. Shur, R. Gaska Sep 2001

Indium-Silicon Co-Doping Of High-Aluminum-Content Algan For Solar Blind Photodetectors, V. Adivarahan, Grigory Simin, G. Tamulaitis, R. Srinivasan, J. Yang, M. Asif Khan, M. S. Shur, R. Gaska

Faculty Publications

We report on an indium–silicon co-doping approach for high-Al-content AlGaN layers. Using this approach, very smooth crack-free n-type AlGaN films as thick as 0.5 μm with Al mole fraction up to 40% were grown over sapphire substrates. The maximum electron concentration in the layers, as determined by Hall measurements, was as high as 8×1017 cm−3 and the Hall mobility was up to 40 cm2/Vs. We used this doping technique to demonstrate solar-blind transparent Schottky barrierphotodetectors with the cut-off wavelength of 278 nm.


Low Frequency Noise In Gan Metal Semiconductor And Metal Oxide Semiconductor Field Effect Transistors, S. L. Rumyantsev, N. Pala, M. S. Shur, R. Gaska, M. E. Levinshtein, M. Asif Khan, Grigory Simin, X. Hu, J. Yang Jul 2001

Low Frequency Noise In Gan Metal Semiconductor And Metal Oxide Semiconductor Field Effect Transistors, S. L. Rumyantsev, N. Pala, M. S. Shur, R. Gaska, M. E. Levinshtein, M. Asif Khan, Grigory Simin, X. Hu, J. Yang

Faculty Publications

The low frequency noise in GaNfield effect transistors has been studied as function of drain and gate biases. The noise dependence on the gate bias points out to the bulk origin of the low frequency noise. The Hooge parameter is found to be around 2×10−3 to 3×10−3.Temperature dependence of the noise reveals a weak contribution of generation–recombination noise at elevated temperatures.


Band-Edge Luminesce In Quaternary Alingan Light-Emitting Diodes, M. Shatalov, A. Chitnis, V. Adivarahan, A. Lunev, J. Zhang, J. W. Yang, Q. Fareed, Grigory Simin, A. Zakheim, M. Asif Khan, R. Gaska, M. S. Shur Feb 2001

Band-Edge Luminesce In Quaternary Alingan Light-Emitting Diodes, M. Shatalov, A. Chitnis, V. Adivarahan, A. Lunev, J. Zhang, J. W. Yang, Q. Fareed, Grigory Simin, A. Zakheim, M. Asif Khan, R. Gaska, M. S. Shur

Faculty Publications

Operation of InGaNmultiple-quantum-well(MQW)light-emitting diodes(LEDs) with quaternary AlInGaN barriers at room and elevated temperatures is reported. The devices outperform conventional GaN/InGaN MQWLEDs, especially at high pump currents. From the measurements of quantum efficiency and total emitted power under dc and pulsed pumping, we show the emission mechanism for quaternary barrier MQWs to be predominantly linked to band-to-band transitions. This is in contrast to localized state emission observed for conventional InGaN/InGaN and GaN/InGaN LEDs. The band-to-band recombination with an increased quantum-well depth improves the high-current performance of the quaternary barrier MQWLEDs, making them attractive for high-power solid-state lighting applications.