Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Other Electrical and Computer Engineering

PDF

University of South Carolina

Aluminum

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Electrical and Computer Engineering

Double-Scaled Potential Profile In A Group-Iii Nitride Alloy Revealed By Monte Carlo Simulation Of Exciton Hopping, K. Kazlauskas, G. Tamulaitis, A. Zukauskas, M. A. Khan, J. W. Yang, J. Zhang, Grigory Simin, M. S. Shur, R. Gaska Nov 2003

Double-Scaled Potential Profile In A Group-Iii Nitride Alloy Revealed By Monte Carlo Simulation Of Exciton Hopping, K. Kazlauskas, G. Tamulaitis, A. Zukauskas, M. A. Khan, J. W. Yang, J. Zhang, Grigory Simin, M. S. Shur, R. Gaska

Faculty Publications

The temperature dependences of the peak position and width of the photoluminescence band in Al0.1In0.01Ga0.89N layers were explained by Monte Carlo simulation of exciton localization and hopping. The introduction of a doubled-scaled potential profile due to inhomogeneous distribution of indium allowed obtaining a good quantitative fit of the experimental data. Hopping of excitons was assumed to occur through localized states distributed on a 16 meV energy scale within the In-rich clusters with the average energy in these clusters dispersed on a larger (42 meV) scale.


Pulsed Atomic Layer Epitaxy Of Quaternary Alingan Layers, J. Zhang, E. Kuokstis, Q. Fareed, H. Wang, J. Yang, Grigory Simin, M. Asif Khan, R. Gaska, M. Shur Aug 2001

Pulsed Atomic Layer Epitaxy Of Quaternary Alingan Layers, J. Zhang, E. Kuokstis, Q. Fareed, H. Wang, J. Yang, Grigory Simin, M. Asif Khan, R. Gaska, M. Shur

Faculty Publications

In this letter, we report on a material deposition scheme for quaternary AlxInyGa1−x–yN layers using a pulsed atomic layer epitaxy (PALE) technique. The PALE approach allows accurate control of the quaternary layer composition and thickness by simply changing the number of aluminum,indium, and gallium pulses in a unit cell and the number of unit cell repeats. Using PALE, AlInGaN layers with Al mole fractions in excess of 40% and strong room-temperature photoluminescence peaks at 280 nm can easily be grown even at temperatures lower than 800 °C.