Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 246

Full-Text Articles in Electrical and Computer Engineering

Electrochemical Advanced Treatment Of Desulfurization Wastewater From Coal-Fired Power Plants, Ju-Cai Wei, Juan Yi, Xu Wu Apr 2024

Electrochemical Advanced Treatment Of Desulfurization Wastewater From Coal-Fired Power Plants, Ju-Cai Wei, Juan Yi, Xu Wu

Journal of Electrochemistry

Zero-emission of desulfurization wastewater is one of the main demands for coal-fired power plants. As typical high salinity wastewater, it is hard to purify the desulfurization wastewater from coal-fired power plants through traditional physicochemical treatment or biochemical treatment, e.g., COD and Cl. A high concentration of Cl ion in desulfurization wastewater restricts wastewater reuse and zero-emission. Electrochemical technology is an attractive method for high salinity wastewater zero-emission, which provides a versatile, efficient, cost-effective, easily automatable, and clean industrial process. For advanced treatment of effluent after triple box process treatment in power plants, this paper reports an electrochemical …


Recent Advances In Solar Photo(Electro)Catalytic Nitrogen Fixation, Jun-Bo Ma, Sheng Lin, Zhiqun Lin, Lan Sun, Chang-Jian Lin Mar 2024

Recent Advances In Solar Photo(Electro)Catalytic Nitrogen Fixation, Jun-Bo Ma, Sheng Lin, Zhiqun Lin, Lan Sun, Chang-Jian Lin

Journal of Electrochemistry

Ammonia (NH3) is an essential chemical in modern society. It is currently produced in industry by the Haber-Bosch process using H2 and N2 as reactants in the presence of iron-based catalysts at high-temperature (400–600 oC) and extremely highpressure (20–40 MPa) conditions. However, its efficiency is limited to 10% to 15%. At the same time, a large amount of energy is consumed, and CO2 emission is inevitably. The development of a sustainable, clean, and environmentally friendly energy system represents a key strategy to address energy crisis and environmental pollution, ultimately aiming to achieve carbon neutrality. …


The Determination Of Pzc And Differential Capacitance Curve Of Platinum-Alkaline Polymer Electrolyte Interfaces, Chen-Xi Liu, Ze-Ping Zou, Mei-Xue Hu, Yu Ding, Yu Gu, Shuai Liu, Wen-Jing Nan, Yi-Chang Ma, Zhao-Bin Chen, Dong-Ping Zhan, Qiu-Gen Zhang, Lin Zhuang, Jia-Wei Yan, Bing-Wei Mao Mar 2024

The Determination Of Pzc And Differential Capacitance Curve Of Platinum-Alkaline Polymer Electrolyte Interfaces, Chen-Xi Liu, Ze-Ping Zou, Mei-Xue Hu, Yu Ding, Yu Gu, Shuai Liu, Wen-Jing Nan, Yi-Chang Ma, Zhao-Bin Chen, Dong-Ping Zhan, Qiu-Gen Zhang, Lin Zhuang, Jia-Wei Yan, Bing-Wei Mao

Journal of Electrochemistry

Alkaline polymer electrolyte (APE) is the core component of modern alkaline hydrogen and oxygen fuel cells, and its single ion conductor nature makes the "electrode/APE" interfaces different from the conventional "electrode/solution" interfaces in terms of ion distribution, electrical double layer structure and polarization behavior. Due to the complexity of the APE and the associated solid-solid interfaces, fundamental investigations are challenging and deeper understanding of the structures and properties of such interfaces is in the infant stage. In this work, we aim to investigate the double layer structure from the aspects of differential capacitance curve and potential of zero charge (PZC) …


Automated Workflow For Redox Potentials And Acidity Constants Calculations From Machine Learning Molecular Dynamics, Feng Wang, Jun Cheng Feb 2024

Automated Workflow For Redox Potentials And Acidity Constants Calculations From Machine Learning Molecular Dynamics, Feng Wang, Jun Cheng

Journal of Electrochemistry

Redox potentials and acidity constants are key properties for evaluating the performance of energy materials. To achieve computational design of new generation of energy materials with higher performances, computing redox potentials and acidity constants with computational chemistry have attracted lots of attention. However, many works are done by using implicit solvation models, which is difficult to be applied to complex solvation environments due to hard parameterization. Recently, ab initio molecular dynamics (AIMD) has been applied to investigate real electrolytes with complex solvation. Furthermore, AIMD based free energy calculation methods have been established to calculate these physical chemical properties accurately. However, …


Joint Time-Frequency Analysis: Taking Charge Penetration Depth And Current Spatial Distribution In The Single Pore As An Example, Nan Wang, Qiu-An Huang, Wei-Heng Li, Yu-Xuan Bai, Jiu-Jun Zhang Feb 2024

Joint Time-Frequency Analysis: Taking Charge Penetration Depth And Current Spatial Distribution In The Single Pore As An Example, Nan Wang, Qiu-An Huang, Wei-Heng Li, Yu-Xuan Bai, Jiu-Jun Zhang

Journal of Electrochemistry

In recent years, joint time-frequency analysis has once again become a research hotspot. Supercapacitors have high power density and long service life, however, in order to balance between power density and energy density, two key factors need to be considered: (i) the specific surface area of the porous matrix; (ii) the electrolyte accessibility to the intra-pore space of porous carbon matrix. Electrochemical impedance spectra are extensively used to investigate charge penetration ratio and charge storage mechanism in the porous electrode for capacitance energy storage. Furthermore, similar results could be obtained by different methods such as stable-state analysis in the frequency …


The Top Ten Scientific Questions In Electrochemistry, Chinese Society Of Electrochemistry Jan 2024

The Top Ten Scientific Questions In Electrochemistry, Chinese Society Of Electrochemistry

Journal of Electrochemistry

No abstract provided.


Rational Design Of Heterostructured Nanomaterials For Accelerating Electrocatalytic Hydrogen Evolution Reaction Kinetics In Alkaline Media, Hai-Bin Ma, Xiao-Yan Zhou, Jia-Yi Li, Hong-Fei Cheng, Ji-Wei Ma Jan 2024

Rational Design Of Heterostructured Nanomaterials For Accelerating Electrocatalytic Hydrogen Evolution Reaction Kinetics In Alkaline Media, Hai-Bin Ma, Xiao-Yan Zhou, Jia-Yi Li, Hong-Fei Cheng, Ji-Wei Ma

Journal of Electrochemistry

Owing to the merits of high energy density, as well as clean and sustainable properties, hydrogen has been deemed to be a prominent alternative energy to traditional fossil fuels. Electrocatalytic hydrogen evolution reaction (HER) has been considered to be mostly promising for achieving green hydrogen production, and has been widely studied in acidic and alkaline solutions. In particular, HER in alkaline media has high potential to achieve large-scale hydrogen production because of the increased durability of electrode materials. However, for the currently most prominent catalyst Pt, its HER kinetics in an alkaline solution is generally 2–3 orders lower than that …


Preparation And Lithium Storage Properties Of Carbon Confined Li3Vo4 Nano Materials, Jia-Qi Fan, Huan-Qiao Song, Jia-Ying An, Amantai A-Yi-Da-Na, Mo Chen Nov 2023

Preparation And Lithium Storage Properties Of Carbon Confined Li3Vo4 Nano Materials, Jia-Qi Fan, Huan-Qiao Song, Jia-Ying An, Amantai A-Yi-Da-Na, Mo Chen

Journal of Electrochemistry

Li3VO4, as a promising anode material for lithium ion batteries, has been widely studied because of its low and safe voltage, and large capacity. However, its poor electronic conductivity impedes the practical application of Li3VO4 particularly at high rates. In this paper, carbon confined Li3VO4 nano materials (Li3VO4/C) were synthesized by hydrothermal and solid-phase method, and for comparison, the Li3VO4 (N) nano materials without carbon confinement and Li3VO4 (B) materials were also synthesized by pure solid-phase method. The composition, structure, morphology and specific …


Surface Modifications Of Lini0.96Co0.02Mn0.02O2 With Tungsten Oxide And Phosphotungstic Acid, Gang Zhao, Zheng-Liang Gong, Yi-Xiao Li, Yong Yang Oct 2023

Surface Modifications Of Lini0.96Co0.02Mn0.02O2 With Tungsten Oxide And Phosphotungstic Acid, Gang Zhao, Zheng-Liang Gong, Yi-Xiao Li, Yong Yang

Journal of Electrochemistry

With the rapid development of electric vehicles, enormous demands are made for higher energy density, better cycling performance and lower cost of lithium-ion batteries (LIBs). As an important high capacity cathode material for LIBs, the high nickel layered oxide material LiNi0.8Co0.1Mn0.1O2(NCM811) can reach an energy density of 760 Wh·kg-1. The ultra-high nickel ternary positive electrode material (LiNi1-x-yCoxMnyO2, x ≥ 0.90) has a specific capacity of more than 210 mAh·g-1, and can realize higher energy density. Besides, an ultra-high nickel material …


Asymmetric Electrode-Electrolyte Interfaces For High-Performance Rechargeable Lithium-Sulfur Batteries, Jia Chou, Ya-Hui Wang, Wen-Peng Wang, Sen Xin, Yu-Guo Guo Sep 2023

Asymmetric Electrode-Electrolyte Interfaces For High-Performance Rechargeable Lithium-Sulfur Batteries, Jia Chou, Ya-Hui Wang, Wen-Peng Wang, Sen Xin, Yu-Guo Guo

Journal of Electrochemistry

With a high cell-level specific energy and a low cost, lithium-sulfur (Li-S) battery has been intensively studied as one of the most promising candidates for competing the next-generation energy storage campaign. Currently, the practical use of Li-S battery is hindered by the rapidly declined storage performance during battery operation, as caused by irreversible loss of electroactive sulfide species at the cathode, dendrite formation at the anode and parasitic reactions at the electrode-electrolyte interface due to unfavorable cathode-anode crosstalk. In this perspective, we propose to stabilize the Li-S electrochemistry, and improve the storage performance of battery by designing asymmetric electrode-electrolyte interfaces …


Effects Of Traps On Photo-Induced Interfacial Charge Transfer Of Ag-Tio2: Photoelectrochemical, Electrochemical And Spectroscopic Characterizations, Zhi-Hao Liang, Jia-Zheng Wang, Dan Wang, Jian-Zhang Zhou, De-Yin Wu Aug 2023

Effects Of Traps On Photo-Induced Interfacial Charge Transfer Of Ag-Tio2: Photoelectrochemical, Electrochemical And Spectroscopic Characterizations, Zhi-Hao Liang, Jia-Zheng Wang, Dan Wang, Jian-Zhang Zhou, De-Yin Wu

Journal of Electrochemistry

In the field of metal-semiconductor composites based plasmon-mediated chemical reactions, a clear and in-depth understanding of charge transfer and recombination mechanisms is crucial for improving plasmonic photocatalytic efficiency. However, the plasmonic photocatalytic reactions at the solid-liquid interface of the electrochemical systems involve complex processes with multiple elementary steps, multiple time scales, and multiple controlling factors. Herein, the combination of photoelectrochemical and electrochemical as well as spectroscopic characterizations has been successfully used to study the effects of traps on the photo-induced interfacial charge transfer of silver-titanium dioxide (Ag-TiO2). The results show that the increase of surface hydroxyl groups may …


Band Alignments Of Metal/Oxides-Water Interfaces Using Ab Initio Molecular Dynamics, Yong-Bin Zhuang, Jun Cheng Jul 2023

Band Alignments Of Metal/Oxides-Water Interfaces Using Ab Initio Molecular Dynamics, Yong-Bin Zhuang, Jun Cheng

Journal of Electrochemistry

Band alignments of electrode-water interfaces are of crucial importance for understanding electrochemical interfaces. In the scenario of electrocatalysis, applied potentials are equivalent to the Fermi levels of metals in the electrochemical cells; in the scenario of photo(electro)catalysis, semiconducting oxides under illumination have chemical reactivities toward redox reactions if the redox potentials of the reactions straddle the conduction band minimums (CBMs) or valence band maximums (VBMs) of the oxides. Computational band alignments allow us to obtain the Fermi level of metals, as well as the CBM and VBM of semiconducting oxides with respect to reference electrodes. In this tutorial, we describe …


Deep Euteceic Solvents-Assisted Synthesis Of Novel Network Nanostructures For Accelerating Formic Acid Electrooxidation, Jun-Ming Zhang, Xiao-Jie Zhang, Yao Chen, Ying-Jian Fan, You-Jun Fan, Jian-Feng Jia May 2023

Deep Euteceic Solvents-Assisted Synthesis Of Novel Network Nanostructures For Accelerating Formic Acid Electrooxidation, Jun-Ming Zhang, Xiao-Jie Zhang, Yao Chen, Ying-Jian Fan, You-Jun Fan, Jian-Feng Jia

Journal of Electrochemistry

Deep eutectic solvents (DESs) have been reported as a type of solvent for the controllable synthesis of metal nanostructures. Interestingly, flower-like palladium (Pd) nanoparticles composed of staggered nanosheets and nanospheres are spontaneously transformed into three-dimensional (3D) network nanostructures in choline chloride-urea DESs using ascorbic acid as a reducing agent. Systematic studies have been carried out to explore the formation mechanism, in which DESs itself acts as a solvent and soft template for the formation of 3D flower-like network nanostructures (FNNs). The amounts of hexadecyl trimethyl ammonium bromide and sodium hydroxide also play a crucial role in the anisotropic growth and …


Fe Nanoparticles Encapsulated In N-Doped Porous Carbon For Efficient Oxygen Reduction In Alkaline Media, Chun-Yan Li, Rui Zhang, Xiao-Jie Ba, Xiao-Le Jiang, Yao-Yue Yang May 2023

Fe Nanoparticles Encapsulated In N-Doped Porous Carbon For Efficient Oxygen Reduction In Alkaline Media, Chun-Yan Li, Rui Zhang, Xiao-Jie Ba, Xiao-Le Jiang, Yao-Yue Yang

Journal of Electrochemistry

Rational design and synthesis of non-precious-metal catalyst plays an important role in improving the activity and stability for oxygen reduction reaction (ORR) but remains a major challenge. In this work, we used a facile approach to synthesize iron nanoparticles encapsulated in nitrogen-doped porous carbon materials (Fe@N-C) from functionalized metal-organic frameworks (MOFs, MET-6). Embedding Fe nanoparticles into the carbon skeleton increases the graphitization degree and the proportion of graphitic N as well as promotes the formation of mesopores in the catalyst. The Fe@N-C-30 catalyst showed the excellent ORR activity in alkaline solutions (E0 = 0.97 V vs. RHE, E1/2 …


Highly Dispersed Pt Nanoparticles Root In Single-Atom Fe Sites In Ldhs Toward Efficient Methanol Oxidation, Qing-Cheng Meng, Lin-Bo Jin, Meng-Ze Ma, Xue-Qing Gao, Ai-Bing Chen, Dao-Jin Zhou, Xiao-Ming Sun Feb 2023

Highly Dispersed Pt Nanoparticles Root In Single-Atom Fe Sites In Ldhs Toward Efficient Methanol Oxidation, Qing-Cheng Meng, Lin-Bo Jin, Meng-Ze Ma, Xue-Qing Gao, Ai-Bing Chen, Dao-Jin Zhou, Xiao-Ming Sun

Journal of Electrochemistry

Active and durable electrocatalysts for methanol oxidation reaction are of critical importance to the commercial viability of direct methanol fuel cell, which has already attracted growing popularities. However, current methanol oxidation electrocatalysts fall far short of expectations and suffer from excessive use of noble metal, mediocre activity, and rapid decay. Here we report the Pt anchored on NiFe-LDHs surface hybrid for stable methanol oxidation in alkaline media. Based on the high intrinsic methanol oxidation activity of Pt nanoparticles, the substrates NiFe-LDHs further enhanced anti-poisoning ability and maintained unaffected stability after 200,000 s cycle test compared to commercial Pt/C catalyst. The …


Carbon-Al Interface Effect On The Performance Of Ionic Liquid-Based Supercapacitor At 3 V And 65 OC, Zhen-Zhen Ye, Shu-Ting Zhang, Xin-Qi Chen, Jin Wang, Ying Jin, Chao-Jie Cui, Lei Zhang, Lu-Ming Qian, Gang Zhang, Wei-Zhong Qian Dec 2022

Carbon-Al Interface Effect On The Performance Of Ionic Liquid-Based Supercapacitor At 3 V And 65 OC, Zhen-Zhen Ye, Shu-Ting Zhang, Xin-Qi Chen, Jin Wang, Ying Jin, Chao-Jie Cui, Lei Zhang, Lu-Ming Qian, Gang Zhang, Wei-Zhong Qian

Journal of Electrochemistry

Ionic liquid (IL) electrolyte-based supercapacitors (SCs) have advantages of high operating voltage window, high energy density and nonflammability, as compared to conventional acetonitrile-based organic electrolyte SCs, and are typically suitable for the large-scale energy storage in the era of carbon neutrality full of renewable, but unstable electricity. However, current efforts were concentrated on the study with coin-cell type of IL-SCs, and less has been reported on the pouch type of IL-SCs for a long cycling time yet. To fabricate a reliable SC for the life time test or for the accelerated aging test under high temperature, one should concern the …


Efficient Interface Enabled By Nano-Hydroxyapatite@Porous Carbon For Lithium-Sulfur Batteries, Jia-Yu Wang, Xue-Feng Tong, Qi-Fan Peng, Yue-Peng Guan, Wei-Kun Wang, An-Bang Wang, Nai-Qiang Liu, Ya-Qin Huang Nov 2022

Efficient Interface Enabled By Nano-Hydroxyapatite@Porous Carbon For Lithium-Sulfur Batteries, Jia-Yu Wang, Xue-Feng Tong, Qi-Fan Peng, Yue-Peng Guan, Wei-Kun Wang, An-Bang Wang, Nai-Qiang Liu, Ya-Qin Huang

Journal of Electrochemistry

The dissolution and “shuttle effect” of lithium polysulfides (LiPSs) hinder the application of lithium-sulfur (Li-S) batteries. To solve those problems, inspired by natural materials, a nano-hydroxyapatite@porous carbon derived from chicken cartilage (nano-HA@CCPC) was fabricated by employing a simple pre-carbonization and carbonization method, and applied in Li-S batteries. The nano-HA@CCPC would provide a reactive interface that allows efficient LiPSs reduction. With a strong affinity for LiPSs and an excellent electronic conductive path for converting LiPSs, the shuttle effect of LiPSs was confined and the redox kinetics of LiPSs was substantially enhanced. Li-S batteries employing nano-HA@CCPC-modified separators exhibited long cycle life and …


Insight Into The Effects Of Cation Disorder And Surface Chemical Residues On The Initial Coulombic Efficiency Of Layered Oxide Cathode, Jin-Li Liu, Han-Feng Wu, Zhi-Bei Liu, Ying-Qiang Wu, Li Wang, Feng-Li Bei, Xiang-Ming He Nov 2022

Insight Into The Effects Of Cation Disorder And Surface Chemical Residues On The Initial Coulombic Efficiency Of Layered Oxide Cathode, Jin-Li Liu, Han-Feng Wu, Zhi-Bei Liu, Ying-Qiang Wu, Li Wang, Feng-Li Bei, Xiang-Ming He

Journal of Electrochemistry

Lithium layered oxide LiNi0.6Co0.2Mn0.2O2 (NCM622) is one of the most promising cathode materials in high-energy lithium-ion batteries for electric vehicles. However, one drawback for NCM622 is that its initial coulombic efficiency (ICE) is only about 87%, which is at least 6% lower than that of LiCoO2 or LiFePO4. In this work, we investigated the effects of surface chemical residues (e.g., LiOH and Li2CO3) and Li/Ni cation disorder resulted during the sintering on the ICE. We found that the ICE of the as-prepared samples could be boosted …


Electrochemical Syntheses Of Nanomaterials And Small Molecules For Electrolytic Hydrogen Production, Jia-Qi Wei, Xiao-Dong Chen, Shu-Zhou Li Oct 2022

Electrochemical Syntheses Of Nanomaterials And Small Molecules For Electrolytic Hydrogen Production, Jia-Qi Wei, Xiao-Dong Chen, Shu-Zhou Li

Journal of Electrochemistry

Hydrogen is a clean, efficient, renewable energy resource and the most promising alternative to fossil fuels for future carbon-neutral energy supply. Therefore, sustainable hydrogen production is highly attractive and urgently demanded, especially via water electrolysis that has clean, abundant precursors and zero emission. However, current water electrolysis is hindered by the sluggish kinetics and low cost/energy efficiency of both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this regard, electrochemical synthesis offers prospects to raise the efficiency and benefit of water electrolysis by fabricating advanced electrocatalysts and providing more efficient/value-adding co-electrolysis alternatives. It is an eco-friendly and facile …


Surface Structure Engineering Of Feni-Based Pre-Catalyst For Oxygen Evolution Reaction: A Mini Review, Jia-Xin Li, Li-Gang Feng Sep 2022

Surface Structure Engineering Of Feni-Based Pre-Catalyst For Oxygen Evolution Reaction: A Mini Review, Jia-Xin Li, Li-Gang Feng

Journal of Electrochemistry

Oxygen evolution reaction (OER) is a significant half-reaction for water splitting reaction, and attention is directed to the high-performance non-precious catalysts. Iron nickel (FeNi)-based material is considered as the most promising pre-catalyst, that will be transferred to the real active phase in the form of high valence state metal species. Even so, the catalytic performance is largely influenced by the structure and morphology of the FeNi pre-catalysts, and lots of work has been done to optimize and tune the structure and chemical environment of the FeNi- based pre-catalysts so as to increase the catalytic performance. Herein, based on our work, …


Electrocatalytic “Volcano-Type” Effect Of Nano-Tio2 (A)/(R) Phase Content In Pt/Tio2-CnX Catalyst, Ai-Lin Cui, Yang Bai, Hong-Ying Yu, Hui-Min Meng May 2022

Electrocatalytic “Volcano-Type” Effect Of Nano-Tio2 (A)/(R) Phase Content In Pt/Tio2-CnX Catalyst, Ai-Lin Cui, Yang Bai, Hong-Ying Yu, Hui-Min Meng

Journal of Electrochemistry

The relationship between the electrochemical activity of fuel cell catalysts and Pt particle size, as well as the catalyst support and co-catalyst is still unclear. In this work, FESEM, XRD, BET, TEM and CV techniques were adopted to investigate the effects of TiO2 anatase (A)/rutile (R) phases content on the electrochemical activity of Pt electrocatalyst. The results showed that the anatase-rutile phase transformation occurred during the heat treatment of TiO2 at 700 ~ 900 oC accompanied by the growth of two-phase crystalline size, and anatase was completely transformed into rutile at 900 oC. TEM results revealed that the …


Preparation Of Pt@Basrtio3 Nanostructure And Its Properties Towards Photoelectrochemical Ammonia Synthesis, Jing Zhang, Rui-Xia Guo, Jian-Jun Fu, Shi-Bin Yin, Pei-Kang Shen, Xin-Yi Zhang Apr 2022

Preparation Of Pt@Basrtio3 Nanostructure And Its Properties Towards Photoelectrochemical Ammonia Synthesis, Jing Zhang, Rui-Xia Guo, Jian-Jun Fu, Shi-Bin Yin, Pei-Kang Shen, Xin-Yi Zhang

Journal of Electrochemistry

Ammonia is an important industrial raw material and a potential green energy. Using renewable energy to convert nitrogen into ammonia under ambient condition is an attractive method. However, the development of efficient photoelectrochemical ammonia synthesis catalysts remains a challenge. Perovskite such as BaSrTiO3 (BST) is a good photocatalytic material. However, BST is active under ultraviolet light and has a high recombination rate of photogenerated electron-hole pairs. By dispersing precious metals, it can effectively regulate the absorption of sunlight by BST. In this work, we used a two-step method to prepare BST. The H2PtCl6·6H2O …


In Situ Characterization Of Electrode Structure And Catalytic Processes In The Electrocatalytic Oxygen Reduction Reaction, Ya-Chen Feng, Xiang Wang, Yu-Qi Wang, Hui-Juan Yan, Dong Wang Mar 2022

In Situ Characterization Of Electrode Structure And Catalytic Processes In The Electrocatalytic Oxygen Reduction Reaction, Ya-Chen Feng, Xiang Wang, Yu-Qi Wang, Hui-Juan Yan, Dong Wang

Journal of Electrochemistry

As an electrochemical energy conversion system, fuel cell has the advantages of high energy conversion efficiency and high cleanliness. Oxygen reduction reaction (ORR), as an important cathode reaction in fuel cells, has received extensive attention. At present, the electrocatalysts are still one of the key materials restricting the further commercialization of fuel cells. The fundamental understanding on the catalytic mechanism of ORR is conducive to the development of electrocatalysts with the enhanced activity and high selectivity. This review aims to summarize the in situ characterization techniques used to study ORR. From this perspective, we first briefly introduce the advantages of …


In-Situ/Operando57Fe Mössbauer Spectroscopic Technique And Its Applications In Nife-Based Electrocatalysts For Oxygen Evolution Reaction, Jafar Hussain Shah, Qi-Xian Xie, Zhi-Chong Kuang, Ri-Le Ge, Wen-Hui Zhou, Duo-Rong Liu, Alexandre I. Rykov, Xu-Ning Li, Jing-Shan Luo, Jun-Hu Wang Mar 2022

In-Situ/Operando57Fe Mössbauer Spectroscopic Technique And Its Applications In Nife-Based Electrocatalysts For Oxygen Evolution Reaction, Jafar Hussain Shah, Qi-Xian Xie, Zhi-Chong Kuang, Ri-Le Ge, Wen-Hui Zhou, Duo-Rong Liu, Alexandre I. Rykov, Xu-Ning Li, Jing-Shan Luo, Jun-Hu Wang

Journal of Electrochemistry

The development of highly efficient and cost-effective electrocatalysts for the sluggish oxygen evolution reaction (OER) remains a significant barrier to establish effective utilization of renewable energy storage systems and water splitting to produce clean fuel. The current status of the research in developing OER catalysts shows that NiFe-based oxygen evolution catalysts (OECs) have been proven as excellent and remarkable candidates for this purpose. But it is critically important to understand the factors that influence their activity and underlying mechanism for the development of state-of-the-art OER catalysts. Therefore, the development of in-situ/operando characterizations is urgently required to detect key …


Selective Co2 Reduction To Formate On Heterostructured Sn/Sno2 Nanoparticles Promoted By Carbon Layer Networks, Xue Teng, Yanli Niu, Shuaiqi Gong, Xuan Liu, Zuofeng Chen Feb 2022

Selective Co2 Reduction To Formate On Heterostructured Sn/Sno2 Nanoparticles Promoted By Carbon Layer Networks, Xue Teng, Yanli Niu, Shuaiqi Gong, Xuan Liu, Zuofeng Chen

Journal of Electrochemistry

Tin (Sn)-based materials have emerged as promising electrocatalysts for selective reduction of CO2 to formate, but their overall performances are still limited by electrode structures which govern the accessibility to active sites, the electron transfer kinetics, and the catalytic stability. In this study, the heterostructured Sn/SnO2 nanoparticles dispersed by N-doped carbon layer networks (Sn/SnO2@NC) were synthesized by a melt-recrystallization method taking the low melting point of Sn (m.p. 232oC). The N-doped carbon layer networks derived from polydopamine could attract more electrons on the electrocatalyst, serve as conductive agents and protect the ultrafine nanoparticles from agglomeration and …


Formation And Morphological Evolution Of Nanoporous Anodized Iron Oxide Films, Jin-Wei Cao, Nan Gao, Zhao-Qing Gao, Chen Wang, Sheng-Yan Shang, Yun-Peng Wang, Hai-Tao Ma Dec 2021

Formation And Morphological Evolution Of Nanoporous Anodized Iron Oxide Films, Jin-Wei Cao, Nan Gao, Zhao-Qing Gao, Chen Wang, Sheng-Yan Shang, Yun-Peng Wang, Hai-Tao Ma

Journal of Electrochemistry

The preparation of iron oxide films with nanoporous structure by anodization has attracted much attention for its potential applications. However, the formation mechanism of porous structure during anodization is still unclear. In this paper, the composition of anodic current during the formation of nanoporous anodized iron oxide film was analyzed in combination with the current density-potential response (I-V curve) and the derivation of Faraday’s law. The results showed that the anodic current consisted of an ionic current (leading to the migration of ions to form oxide) and an electronic current (leading to the oxygen evolution), and the …


Copper Nanoparticles In-Situ Anchored On Nitrogen-Doped Carbon For High-Efficiency Oxygen Reduction Reaction Electrocatalyst, Hui-Fang Yuan, Yue Zhang, Xing-Wu Zhai, Li-Bing Hu, Gui-Xian Ge, Gang Wang, Feng Yu, Bin Dai Dec 2021

Copper Nanoparticles In-Situ Anchored On Nitrogen-Doped Carbon For High-Efficiency Oxygen Reduction Reaction Electrocatalyst, Hui-Fang Yuan, Yue Zhang, Xing-Wu Zhai, Li-Bing Hu, Gui-Xian Ge, Gang Wang, Feng Yu, Bin Dai

Journal of Electrochemistry

Compared with noble metal platinum (Pt)-based catalysts, inexpensive non-noble metal electrocatalysts have attracted extensive attention for oxygen reduction reaction (ORR). Herein, chitosan as a kind of biomass resource rich in nitrogen and carbon was used to prepare nitrogen-doped carbon (N-C) and N-C in-situ anchored by copper nanoparticles (Cu/N-C). The as-obtained N-C and Cu/N-C nanoparticles were successfully used as non-noble eletrocatalysts tested for ORR. Compared with the N-C, the Cu/N-C showed the high surface area of 607.3 m 2·g-1 with the mean pore size of 2.5 nm and the pore volume of 0.40 cm3·g-1. The most positive Gibbs free …


Mathematical Expression And Quantitative Analysis Of Impedance Spectrum On The Interface Of Glassy Carbon Electrode, Lei Cheng, Pu-Xuan Yan, You-Jun Fan, Hua-Hong Zou, Hong Liang Oct 2021

Mathematical Expression And Quantitative Analysis Of Impedance Spectrum On The Interface Of Glassy Carbon Electrode, Lei Cheng, Pu-Xuan Yan, You-Jun Fan, Hua-Hong Zou, Hong Liang

Journal of Electrochemistry

Glassy carbon electrode (GCE) is a common basic electrode for various electrochemical sensors, and the detection properties are determined by its interfacial characteristics. In this paper, we established an equivalent circuit including electrolyte resistance (Rel), charge transport resistance (Rct), diffusion impedance (Rdi, Cdi), electrochemical (oxidation/reduction) reaction impedance (RR, CR), surface adsorption impedance (Rads , Cads), double-layer capacitance (CDL), and derived the mathematical expression for the equivalent circuit. The Rel and CDL are contributed by inactive …


Preparation And Electrochemical Evaluation Of Mos2/Graphene Quantum Dots As A Catalyst For Hydrogen Evolution In Microbial Electrolysis Cell, Hong-Yan Dai, Hui-Min Yang, Xian Liu, Xiu-Li Song, Zhen-Hai Liang Aug 2021

Preparation And Electrochemical Evaluation Of Mos2/Graphene Quantum Dots As A Catalyst For Hydrogen Evolution In Microbial Electrolysis Cell, Hong-Yan Dai, Hui-Min Yang, Xian Liu, Xiu-Li Song, Zhen-Hai Liang

Journal of Electrochemistry

Microbial electrolysis cell (MEC) is a relatively new bioelectrochemical technology that produces H2 and meanwhile treats organic wastewater. Cathode hydrogen evolution catalyst plays a key role in MEC. The doping of Graphene Quantum Dots (GQDs) into MoS2 nanosheets can improve the catalytic activity of MoS2 by creating abundant defect sites both in the edge plane and the basal plane, as well as enhancing the electrical conductivity. In this paper, using Na2MoO4 , cysteine and GQDs as raw materials, a series of MoS2/GQDs composites were firstly synthesized via hydrothermal method, and then loaded …


Storage Performance And Mechanism Of Mose2 Nanospheres In Lithium And Magnesium Ion Batteries, Yi Peng, Wei Zhang, Fang-Zhen Zuo, Hao-Ying Lv, Kai-Jun Hong Aug 2021

Storage Performance And Mechanism Of Mose2 Nanospheres In Lithium And Magnesium Ion Batteries, Yi Peng, Wei Zhang, Fang-Zhen Zuo, Hao-Ying Lv, Kai-Jun Hong

Journal of Electrochemistry

Molybdenum diselenide (MoSe2) is a two-dimensional (2D) transition metal dichalcogenide (TMD) material, attracting wide attention in lithium ion battery (LIB) and exhibiting great potential in next-generation magnesium ion battery (MIB) due to its unique layered structure with fast ion mobility and weak van der Waals interlayer interaction. However, the reported literatures related to MoSe2 mainly focus on the enhancement of performance in LIB without deep storage mechanisms investigations. Meanwhile,the magnesium storage capacity and mechanisms have not been explored. In this work, MoSe2 nanospheres were synthesized via wet chemical route and followed by annealing treatment. When used …