Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

Series

Institution
Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 398

Full-Text Articles in Electrical and Computer Engineering

Development Of A Multi-Use Modular Microfluidic Platform Using 3d Printing, Carson Emeigh May 2024

Development Of A Multi-Use Modular Microfluidic Platform Using 3d Printing, Carson Emeigh

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Microfluidic lab-on-a-chip (LoC) technology has driven numerous innovations due to their ability to perform laboratory-scale experiments on a single chip using microchannels. Although LoC technology has been innovative, it still suffers from limitations related to its fabrication and design flexibility. Typical LoC fabrication, with photolithography, is time consuming, expensive, and inflexible. To overcome the limitations of LoC devices, modular microfluidic platforms have been developed where multiple microfluidic modules, each with a specific function or group of functions, can be combined on a single platform. Modular microfluidics have overcome some of the limitations of LoC devices, but currently, their fabrication is …


Developing General Purpose Apps To Automate Image Analysis Of Wave-Augmented-Varicose-Explosion Atomization And Other Multi-Phase Interfacial Flows, Ethan Newkirk May 2024

Developing General Purpose Apps To Automate Image Analysis Of Wave-Augmented-Varicose-Explosion Atomization And Other Multi-Phase Interfacial Flows, Ethan Newkirk

Senior Honors Theses

Atomization involves disrupting a flow of contiguous liquid into small droplets ranging from one submicron to several hundred microns (micrometers) in diameter through the processes of exerting sufficient forces that disrupt the retaining surface tensions of the liquid. Understanding this phenomenon requires high-speed imaging from physical models or rigorous multiphase computational fluid dynamics models. We produce a MATLAB application that utilizes various methods of image analysis to quickly analyze and store mathematical data from detailed image analyses. We present a user with numerous tools and capabilities that provide results that deviate from 1.8% to 8.9% of the original image sequence …


External Direct Sum Invariant Subspace And Decomposition Of Coupled Differential-Difference Equations, Keqin Gu, Huan Phan-Van Jan 2024

External Direct Sum Invariant Subspace And Decomposition Of Coupled Differential-Difference Equations, Keqin Gu, Huan Phan-Van

SIUE Faculty Research, Scholarship, and Creative Activity

This article discusses the invariant subspaces that are restricted to be external direct sums. Some existence conditions are presented that facilitate finding such invariant subspaces. This problem is related to the decomposition of coupled differential-difference equations, leading to the possibility of lowering the dimensions of coupled differential-difference equations. As has been well documented, lowering the dimension of coupled differential-difference equations can drastically reduce the computational time needed in stability analysis when a complete quadratic Lyapunov-Krasovskii functional is used. Most known ad hoc methods of reducing the order are special cases of this formulation.


Structured Invariant Subspace And Decomposition Of Systems With Time Delays And Uncertainties, Huan Phan-Van, Keqin Gu Jan 2024

Structured Invariant Subspace And Decomposition Of Systems With Time Delays And Uncertainties, Huan Phan-Van, Keqin Gu

SIUE Faculty Research, Scholarship, and Creative Activity

This article discusses invariant subspaces of a matrix with a given partition structure. The existence of a nontrivial structured invariant subspace is equivalent to the possibility of decomposing the associated system with multiple feedback blocks such that the feedback operators are subject to a given constraint. The formulation is especially useful in the stability analysis of time-delay systems using the Lyapunov-Krasovskii functional approach where computational efficiency is essential in order to achieve accuracy for large scale systems. The set of all structured invariant subspaces are obtained (thus all possible decompositions are obtained as a result) for the coupled differential-difference equations …


Energy Efficiency In Additive Manufacturing: Condensed Review, Ismail Fidan, Vivekanand Naikwadi, Suhas Alkunte, Roshan Mishra, Khalid Tantawi Jan 2024

Energy Efficiency In Additive Manufacturing: Condensed Review, Ismail Fidan, Vivekanand Naikwadi, Suhas Alkunte, Roshan Mishra, Khalid Tantawi

Engineering Technology Faculty Publications

Today, it is significant that the use of additive manufacturing (AM) has growing in almost every aspect of the daily life. A high number of sectors are adapting and implementing this revolutionary production technology in their domain to increase production volumes, reduce the cost of production, fabricate light weight and complex parts in a short period of time, and respond to the manufacturing needs of customers. It is clear that the AM technologies consume energy to complete the production tasks of each part. Therefore, it is imperative to know the impact of energy efficiency in order to economically and properly …


Stereoscopic-Based Mass Properties Estimation For Warhead Fragments, Alessia Nocerino, Katharine Larsen, Riccardo Bevilacqua, Elisabetta L. Jerome Nov 2023

Stereoscopic-Based Mass Properties Estimation For Warhead Fragments, Alessia Nocerino, Katharine Larsen, Riccardo Bevilacqua, Elisabetta L. Jerome

Student Works

FRAGMENTATION characteristics such as spatial distribution, number of fragments, fragment velocity, and fragment mass can be used to characterize the lethality of a fragmenting weapon or any metal cased explosive [1,2]. However, most warhead tests and evaluations are limited to static arena testing, where fragment characteristics must be collected by hand. Recently, stereoscopic imaging techniques have been added to static arena tests. Using this method, position tracks can be collected for each fragment, and then velocity information can be found. This paper proposes a method to estimate the mass and moment of inertia using data collected by a stereoscopic imaging …


Impact Of Silicon Ion Irradiation On Aluminum Nitride-Transduced Microelectromechanical Resonators, David D. Lynes, Joshua Young, Eric Lang, Hengky Chandrahalim Nov 2023

Impact Of Silicon Ion Irradiation On Aluminum Nitride-Transduced Microelectromechanical Resonators, David D. Lynes, Joshua Young, Eric Lang, Hengky Chandrahalim

Faculty Publications

Microelectromechanical systems (MEMS) resonators use is widespread, from electronic filters and oscillators to physical sensors such as accelerometers and gyroscopes. These devices' ubiquity, small size, and low power consumption make them ideal for use in systems such as CubeSats, micro aerial vehicles, autonomous underwater vehicles, and micro-robots operating in radiation environments. Radiation's interaction with materials manifests as atomic displacement and ionization, resulting in mechanical and electronic property changes, photocurrents, and charge buildup. This study examines silicon (Si) ion irradiation's interaction with piezoelectrically transduced MEMS resonators. Furthermore, the effect of adding a dielectric silicon oxide (SiO2) thin film is …


Hardware-In-The-Loop Reaction Wheel Testbed With Camera Vision, Abigail Romero, Harvey Perkins, Stephen Kwok-Choon Oct 2023

Hardware-In-The-Loop Reaction Wheel Testbed With Camera Vision, Abigail Romero, Harvey Perkins, Stephen Kwok-Choon

College of Engineering Summer Undergraduate Research Program

Reaction wheels are widely used in aerospace systems as a method of attitude control. This research was focused on the design, development, and testing of a hardware-in-the-loop reaction wheel testbed that can be used for research and teaching applications related to satellite navigation and control. This project successfully utilized commercial off-the-shelf components to develop a reaction wheel capable of controlling the orientation of a freely rotating platform, as well as tracking objects using computer vision.


Precision Spraying Using Variable Time Delays And Vision-Based Velocity Estimation, Paolo Rommel Sanchez, Hong Zhang Oct 2023

Precision Spraying Using Variable Time Delays And Vision-Based Velocity Estimation, Paolo Rommel Sanchez, Hong Zhang

Henry M. Rowan College of Engineering Faculty Scholarship

Traditionally, precision farm equipment often relies on real-time kinematics and global positioning systems (RTK-GPS) for accurate position and velocity estimates. This approach proved effective and widely adopted in developed regions where RTK-GPS satellite and base station availability and visibility are not limited. However, RTK-GPS signal can be limited in farm areas due to topographic and economic constraints. Thus, this study developed a precision sprayer that estimated the travel velocity locally by tracking the relative motion of plants using a deep-learning-based machine vision system. Sprayer valves were then controlled by variable time delay (VTD) queuing and dynamic filtering. The proposed velocity …


Trumpet Directivity From A Rotating Semicircular Array, Samuel D. Bellows, Joseph E. Avila, Timothy W. Leishman Sep 2023

Trumpet Directivity From A Rotating Semicircular Array, Samuel D. Bellows, Joseph E. Avila, Timothy W. Leishman

Directivity

The directivity function of a played musical instrument describes the angular dependence of its acoustic radiation and diffraction about the instrument, musician, and musician’s chair. Directivity influences sound in rehearsal, performance, and recording environments and signals in audio systems. Because high-resolution, spherically comprehensive measurements of played musical instruments have been unavailable in the past, the authors have undertaken research to produce and share such data for studies of musical instruments, simulations of acoustical environments, optimizations of microphone placements, and other applications. The authors acquired the data from repeated chromatic scales produced by a trumpet played at mezzo-forte in an anechoic …


Hierarchical Based Classifcation Method Based On Fusion Ofgaussian Map Descriptors Foralzheimer Diagnosis Using T1‑Weighted Magnetic Resonance Imaging, Nourhan Zayed, Shereen E. Morsy, Inas A. Yassine Aug 2023

Hierarchical Based Classifcation Method Based On Fusion Ofgaussian Map Descriptors Foralzheimer Diagnosis Using T1‑Weighted Magnetic Resonance Imaging, Nourhan Zayed, Shereen E. Morsy, Inas A. Yassine

Mechanical Engineering

Alzheimer’s disease (AD) is considered one of the most spouting elderly diseases. In 2015, AD is reported the US’s sixth cause of death. Substantially, non-invasive imaging is widely employed to provide biomarkers supporting AD screening, diagnosis, and progression. In this study, Gaussian descriptors-based features are proposed to be efcient new biomarkers using Magnetic Resonance Imaging (MRI) T1-weighted images to diferentiate between Alzheimer’s disease (AD), Mild Cognitive Impairment (MCI), and Normal controls (NC). Several Gaussian map-based features are extracted such as Gaussian shape operator, Gaussian curvature, and mean curvature. The aforementioned features are then introduced to the Support Vector Machine (SVM). …


Neuroevolution Application To Collaborative And Heuristics-Based Connected And Autonomous Vehicle Cohort Simulation At Uncontrolled Intersection, Frederic Jacquelin, Jungyun Bae, Bo Chen, Darrell Robinette Jun 2023

Neuroevolution Application To Collaborative And Heuristics-Based Connected And Autonomous Vehicle Cohort Simulation At Uncontrolled Intersection, Frederic Jacquelin, Jungyun Bae, Bo Chen, Darrell Robinette

Michigan Tech Publications, Part 2

Artificial intelligence is gaining tremendous attractiveness and showing great success in solving various problems, such as simplifying optimal control derivation. This work focuses on the application of Neuroevolution to the control of Connected and Autonomous Vehicle (CAV) cohorts operating at uncontrolled intersections. The proposed method implementation’s simplicity, thanks to the inclusion of heuristics and effective real-time performance are demonstrated. The resulting architecture achieves nearly ideal operating conditions in keeping the average speeds close to the speed limit. It achieves twice as high mean speed throughput as a controlled intersection, hence enabling lower travel time and mitigating energy inefficiencies from stop-and-go …


Real-Time Suitable Predictive Control Using Spat Information From Automated Traffic Lights, Pradeep Bhat, Bo Chen May 2023

Real-Time Suitable Predictive Control Using Spat Information From Automated Traffic Lights, Pradeep Bhat, Bo Chen

Michigan Tech Publications, Part 2

Traffic intersections throughout the United States combine fixed, semi-actuated, and fully actuated intersections. In the case of the semi-actuated and actuated intersections, uncertainties are considered in phase duration. These uncertainties are due to car waiting queues and pedestrian crossing. Intelligent transportation systems deployed in traffic infrastructure can communicate Signal and Phase Timing messages (SPaT) to vehicles approaching intersections. In the connected and automated vehicle ecosystem, the fuel savings potential has been explored. Prior studies have predominantly focused on fixed time control for the driver. However, in the case of actuated signals, there is a different and significant challenge due to …


Sharprazor: Automatic Removal Of Hair And Ruler Marks From Dermoscopy Images, Reda Kasmi, Jason Hagerty, Reagan Harris Young, Norsang Lama, Januka Nepal, Jessica Miinch, William V. Stoecker, R. Joe Stanley Apr 2023

Sharprazor: Automatic Removal Of Hair And Ruler Marks From Dermoscopy Images, Reda Kasmi, Jason Hagerty, Reagan Harris Young, Norsang Lama, Januka Nepal, Jessica Miinch, William V. Stoecker, R. Joe Stanley

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Background: The removal of hair and ruler marks is critical in handcrafted image analysis of dermoscopic skin lesions. No other dermoscopic artifacts cause more problems in segmentation and structure detection. Purpose: The aim of the work is to detect both white and black hair, artifacts and finally inpaint correctly the image. Method: We introduce a new algorithm: SharpRazor, to detect hair and ruler marks and remove them from the image. Our multiple-filter approach detects hairs of varying widths within varying backgrounds, while avoiding detection of vessels and bubbles. The proposed algorithm utilizes grayscale plane modification, hair enhancement, segmentation using tri-directional …


Optimal Configuration Of Extreme Fast Charging Stations Integrated With Energy Storage System And Photovoltaic Panels In Distribution Networks, Zhouquan Wu, Pradeep Bhat, Bo Chen Mar 2023

Optimal Configuration Of Extreme Fast Charging Stations Integrated With Energy Storage System And Photovoltaic Panels In Distribution Networks, Zhouquan Wu, Pradeep Bhat, Bo Chen

Michigan Tech Publications

Extreme fast charging (XFC) for electric vehicles (EVs) has emerged recently because of the short charging period. However, the extreme high charging power of EVs at XFC stations may severely impact distribution networks. This paper addresses the estimation of the charging power demand of XFC stations and the design of multiple XFC stations with renewable energy resources in current distribution networks. First, a Monte Carlo (MC) simulation tool was created utilizing the EV arrival time and state-of-charge (SOC) distributions obtained from the dataset of vehicle travel surveys. Various impact factors are considered to obtain a realistic estimation of the charging …


Glass-Based Biodegradable Pressure Sensor Toward Biomechanical Monitoring With A Controllable Lifetime, Devdatt Chattopadhyay, Jonghyun Park, Chang-Soo Kim Feb 2023

Glass-Based Biodegradable Pressure Sensor Toward Biomechanical Monitoring With A Controllable Lifetime, Devdatt Chattopadhyay, Jonghyun Park, Chang-Soo Kim

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A New Class of Potentially Implantable Solid-State Sensors is Demonstrated Utilizing Biodegradable Glass as the Main Structural Material. the Device Behavior is Manipulated Via Chemical Decomposition, and Then Physically Disintegrated in a Controlled Manner. It is based on the Capacitive Sensing Mechanism, Comprising an Elastic Insulator between Two Borate-Rich Glass Substrates. This Mesoscale Pressure Sensor is Characterized by a Range of Pressure of Up to 14 MPa in a Phosphate Buffer Solution Environment. the Sensor Exhibits Good Sensitivity and Reversibility Responding to Compressive Pressures and Remains Fully Functional Before a Desired, Sudden Failure Caused by Dissolution. the Operational Lifetime Can …


Oxidation Layer Formation On Aluminum Substrates With Surface Defects Using Molecular Dynamics Simulation, Emmanuel Olugbade, Hiep Pham, Yuchu He, Haicheng Zhou, Chulsoon Hwang, Jonghyun Park Jan 2023

Oxidation Layer Formation On Aluminum Substrates With Surface Defects Using Molecular Dynamics Simulation, Emmanuel Olugbade, Hiep Pham, Yuchu He, Haicheng Zhou, Chulsoon Hwang, Jonghyun Park

Electrical and Computer Engineering Faculty Research & Creative Works

Aluminum Oxide Layer Affects the Integrity of Electrical Contact and Can Contribute Adversely to Passive Intermodulation (PIM) Behavior in Radio Frequency (RF) Devices, necessitating a Need for Understanding its Formation Mechanism and Realistic Estimation of its Thickness. using ReaxFF Molecular Dynamics Simulation Technique, This Study Investigated the Impact of Surface Defects on Aluminum Oxide Layer Formation. Results Reveal that Crystallographic Orientation Did Not Affect the Kinetics of Oxidation Process of Aluminum. However, the Reaction Kinetics Increased Significantly with Surface Inhomogeneities Such as Cracks, Scratches, and Grain Boundaries. a Non-Uniform Oxide Layer with Thickness Variation in the Range of 72-77% Was …


Gamelan Gong Directivity Dataset, Samuel D. Bellows, Dallin T. Harwood, Kent L. Gee, Micah R. Shepherd Jan 2023

Gamelan Gong Directivity Dataset, Samuel D. Bellows, Dallin T. Harwood, Kent L. Gee, Micah R. Shepherd

Directivity

No abstract provided.


Static I-V Based Pim Evaluation For Spring And Fabric-Over-Foam Contacts, Kalkidan W. Anjajo, Yang Xu, Shengxuan Xia, Yuchu He, Haicheng Zhou, Hanfeng Wang, Jonghyun Park, Chulsoon Hwang Jan 2023

Static I-V Based Pim Evaluation For Spring And Fabric-Over-Foam Contacts, Kalkidan W. Anjajo, Yang Xu, Shengxuan Xia, Yuchu He, Haicheng Zhou, Hanfeng Wang, Jonghyun Park, Chulsoon Hwang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Spring Clips and Fabric-Over-Foams (FOFs) Are Widely Used in Mobile Devices for Electrical Connection Purposes. However, the Imperfect Metallic Connections Tend to Induce Passive Intermodulation (PIM), Resulting in a Receiver Sensitivity Degradation, Known as RP Desensitization. Due to the Complexity of the PIM Characterization, there is Not Yet a Way to Evaluate PIM Performance using a Simple Setup for Environments Like Factories. in This Paper, a Current-Voltage (I-V) Behavior-Based PIM Evaluation Method is Proposed and Validated with Various Metallic Contacts and Contact Forces. the Test Results Demonstrated the Feasibility of the PIM Performance Evaluation based on the Measured Static I-V …


A Review Of Piezoelectric Footwear Energy Harvesters: Principles, Methods, And Applications, Bingqi Zhao, Feng Qian, Alexander Hatfield, Lei Zuo, Tian-Bing Xu Jan 2023

A Review Of Piezoelectric Footwear Energy Harvesters: Principles, Methods, And Applications, Bingqi Zhao, Feng Qian, Alexander Hatfield, Lei Zuo, Tian-Bing Xu

Mechanical & Aerospace Engineering Faculty Publications

Over the last couple of decades, numerous piezoelectric footwear energy harvesters (PFEHs) have been reported in the literature. This paper reviews the principles, methods, and applications of PFEH technologies. First, the popular piezoelectric materials used and their properties for PEEHs are summarized. Then, the force interaction with the ground and dynamic energy distribution on the footprint as well as accelerations are analyzed and summarized to provide the baseline, constraints, potential, and limitations for PFEH design. Furthermore, the energy flow from human walking to the usable energy by the PFEHs and the methods to improve the energy conversion efficiency are presented. …


Zno Varistors – The Ideal Microstructure And Characteristics, And Methods Investigated And Developed To Achieve These, Maura Kelleher Jan 2023

Zno Varistors – The Ideal Microstructure And Characteristics, And Methods Investigated And Developed To Achieve These, Maura Kelleher

Books/Book Chapters

ZnO-Bi2O3-Sb2O3 varistors have been extensively studied since their discovery 5 decades ago. Their function in protecting increasingly sensitive electronic components by absorbing random surges of energy is even more important today. Also, the metal oxides from which they are made from are becoming even more precious. Their electrical characteristics are highly dependent on their microstructural characteristics which are highly dependent on their composition and methods used. The purpose of this article is to explain the ideal microstructure required to obtain the ideal electrical characteristics, the powder preparation methods investigated and developed to achieve it, and some future directions are outlined.


Perceptual Anthropomorphic Walking Robot Platform For Navigation In Unstructured And Undifferentiated Environments, Luige Vladareanu, Mihai Rădulescu, Marius Pandelea, Hongbo Wang, Florentin Smarandache, Yongfei Feng, Ionel-Alexandru Gal, Alexandra C. Ciocîrlan Jan 2023

Perceptual Anthropomorphic Walking Robot Platform For Navigation In Unstructured And Undifferentiated Environments, Luige Vladareanu, Mihai Rădulescu, Marius Pandelea, Hongbo Wang, Florentin Smarandache, Yongfei Feng, Ionel-Alexandru Gal, Alexandra C. Ciocîrlan

Branch Mathematics and Statistics Faculty and Staff Publications

This scientific presentation studies the VIPRO Platform for control of Anthropomorphic Walking Robots (AWR), the architecture control system of the SiMeLA MP robot motion, and shows several experimental results.


Topologically Optimized Electrodes For Electroosmotic Actuation, Jianwen Sun, Jianyu Zhang, Ce Guan, Teng Zhou, Shizhi Qian, Yongbo Deng Jan 2023

Topologically Optimized Electrodes For Electroosmotic Actuation, Jianwen Sun, Jianyu Zhang, Ce Guan, Teng Zhou, Shizhi Qian, Yongbo Deng

Mechanical & Aerospace Engineering Faculty Publications

Electroosmosis is one of the most used actuation mechanisms for the microfluidics in the current active lab-on-chip devices. It is generated on the induced charged microchannel walls in contact with an electrolyte solution. Electrode distribution plays the key role on providing the external electric field for electroosmosis, and determines the performance of electroosmotic microfluidics. Therefore, this paper proposes a topology optimization approach for the electrodes of electroosmotic microfluidics, where the electrode layout on the microchannel wall can be determined to achieve designer desired microfluidic performance. This topology optimization is carried out by implementing the interpolation of electric insulation and electric …


Metaversekg: Knowledge Graph For Engineering And Design Application In Industrial Metaverse, Utkarshani Jaimini, Tongtao Zhang, Georgia Olympia Brikis Oct 2022

Metaversekg: Knowledge Graph For Engineering And Design Application In Industrial Metaverse, Utkarshani Jaimini, Tongtao Zhang, Georgia Olympia Brikis

Publications

While the term Metaverse was first coined by the author Neal Stephenson in 1992 in his science fiction novel “Snow Crash”, today the vision of an integrated virtual world is becoming a reality across different sectors. Applications in gaming and consumer products are gaining traction, industrial metaverse applications are, still in their early stages of development with one of the challenges being interoperability across various metaverse development platforms and existing software tools. In this work we propose the use of a knowledge graph based semantic data exchange layer, the Metaverse Knowledge Graph, to enable seamless transfer of information across platforms. …


Automated Robotic Light Bulb Testing Platform, Agha I. Akram, Muhammad Ali Ummy May 2022

Automated Robotic Light Bulb Testing Platform, Agha I. Akram, Muhammad Ali Ummy

Publications and Research

The main purpose of this project is to create a functional prototype of a multilayered system that incorporates aspects of electrical, mechanical, and computer engineering technology. The main objective of the system is to be able to determine whether a light bulb is working or not. The building blocks of this system are a robotic arm that is able to slide along a rail (for added mobility), a conveyor belt, and an electromechanical device that holds and tests light bulbs. Initially, the robot arm picks up a light bulb and places it into the holder which then tests it. A …


A Deep Learning-Based Approach To Extraction Of Filler Morphology In Sem Images With The Application Of Automated Quality Inspection, Md. Fashiar Rahman, Tzu-Liang Bill Tseng, Jianguo Wu, Yuxin Wen, Yirong Lin Mar 2022

A Deep Learning-Based Approach To Extraction Of Filler Morphology In Sem Images With The Application Of Automated Quality Inspection, Md. Fashiar Rahman, Tzu-Liang Bill Tseng, Jianguo Wu, Yuxin Wen, Yirong Lin

Engineering Faculty Articles and Research

Automatic extraction of filler morphology (size, orientation, and spatial distribution) in Scanning Electron Microscopic (SEM) images is essential in many applications such as automatic quality inspection in composite manufacturing. Extraction of filler morphology greatly depends on accurate segmentation of fillers (fibers and particles), which is a challenging task due to the overlap of fibers and particles and their obscure presence in SEM images. Convolution Neural Networks (CNNs) have been shown to be very effective at object recognition in digital images. This paper proposes an automatic filler detection system in SEM images, utilizing a Mask Region-based CNN architecture. The proposed system …


An Accurate And Computationally Efficient Method For Battery Capacity Fade Modeling, D. M. Ajiboye, Jonathan W. Kimball, R.(Robert) G. Landers, John (T.) Park Mar 2022

An Accurate And Computationally Efficient Method For Battery Capacity Fade Modeling, D. M. Ajiboye, Jonathan W. Kimball, R.(Robert) G. Landers, John (T.) Park

Electrical and Computer Engineering Faculty Research & Creative Works

The Industry Demand for Accurate and Fast Algorithms that Model Vital Battery Parameters, E.g., State-Of-Health, State-Of-Charge, Pulse-Power Capability, is Substantial. One of the Most Critical Models is Battery Capacity Fade. the Key Challenge with Physics-Based Battery Capacity Fade Modeling is the High Numerical Cost in Solving Complex Models. in This Study, an Efficient and Fast Model is Presented to Capture Capacity Fade in Lithium-Ion Batteries. Here, the High-Order Chebyshev Spectral Method is Employed to Address the Associated Complexity with Physics-Based Capacity Fade Models. its Many Advantages, Such as Low Computational Memory, High Accuracy, Exponential Convergence, and Ease of Implementation, Allow …


Polarization-Sensitive Optical Responses From Natural Layered Hydrated Sodium Sulfosalt Gerstleyite, Ravi P. N. Tripathi, Xiaodong Yang, Jie Gao Mar 2022

Polarization-Sensitive Optical Responses From Natural Layered Hydrated Sodium Sulfosalt Gerstleyite, Ravi P. N. Tripathi, Xiaodong Yang, Jie Gao

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Multi-element layered materials have gained substantial attention in the context of achieving the customized light-matter interactions at subwavelength scale via stoichiometric engineering, which is crucial for the realization of miniaturized polarization-sensitive optoelectronic and nanophotonic devices. Herein, naturally occurring hydrated sodium sulfosalt gerstleyite is introduced as one new multi-element van der Waals (vdW) layered material. The mechanically exfoliated thin gerstleyite flakes are demonstrated to exhibit polarization-sensitive anisotropic linear and nonlinear optical responses including angle-resolved Raman scattering, anomalous wavelength-dependent linear dichroism transition, birefringence effect, and polarization-dependent third-harmonic generation (THG). Furthermore, the third-order nonlinear susceptibility of gerstleyite crystal is estimated by the probed …


Kemar Hats Head Orientation Directivity, Samuel D. Bellows, Timothy W. Leishman Mar 2022

Kemar Hats Head Orientation Directivity, Samuel D. Bellows, Timothy W. Leishman

Directivity

This directivity data set for a KEMAR head head-and-torso simulator (HATS) includes head orientations in 14 directions in 5° steps starting from 0° to 40° and then in 10° steps from 40° to 90°. The full spherical measurements followed at an a = 0.97 m radius with the mouth aperture at the spherical center. The sampling density and distribution followed the AES 5° dual-equiangular sampling standard, omitting the south pole (θ = 180°). Thus, each spherical directivity assessment included 36 polar-angle θ samples and 72 azimuthal-angle ϕ samples. The presented data include 22 1/3-octave bands, ranging from 80 Hz …


Evaluation Of The Accuracy Of Different Pv Estimation Models And The Effect Of Dust Cleaning: Case Study A 103 Mw Pv Plant In Jordan, Loiy Al-Ghussain, Moath Abu Subaih, Andres Annuk Jan 2022

Evaluation Of The Accuracy Of Different Pv Estimation Models And The Effect Of Dust Cleaning: Case Study A 103 Mw Pv Plant In Jordan, Loiy Al-Ghussain, Moath Abu Subaih, Andres Annuk

Mechanical Engineering Graduate Research

The estimation of PV production has been widely investigated previously, where many empirical models have been proposed to account for wind and soiling effects for specific locations. However, the performance of these models varies among the investigated sites. Hence, it is vital to assess and evaluate the performance of these models and benchmark them against the common PV estimation model that accounts only for the ambient temperature. Therefore, this study aims to evaluate the accuracy and performance of four empirical wind models considering the soiling effect, and compare them to the standard model for a 103 MW PV plant in …