Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

Missouri University of Science and Technology

Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 139

Full-Text Articles in Electrical and Computer Engineering

A Reputation System For Provably-Robust Decision Making In Iot Blockchain Networks, Charles C. Rawlins, Sarangapani Jagannathan, Venkata Sriram Siddhardh Nadendla Apr 2024

A Reputation System For Provably-Robust Decision Making In Iot Blockchain Networks, Charles C. Rawlins, Sarangapani Jagannathan, Venkata Sriram Siddhardh Nadendla

Electrical and Computer Engineering Faculty Research & Creative Works

Blockchain systems have been successful in discerning truthful information from interagent interaction amidst possible attackers or conflicts, which is crucial for the completion of nontrivial tasks in distributed networking. However, the state-of-the-art blockchain protocols are limited to resource-rich applications where reliably connected nodes within the network are equipped with significant computing power to run lottery-based proof-of-work (pow) consensus. The purpose of this work is to address these challenges for implementation in a severely resource-constrained distributed network with internet of things (iot) devices. The contribution of this work is a novel lightweight alternative, called weight-based reputation (wbr) scheme, to classify new …


Cr-Sam: Curvature Regularized Sharpness-Aware Minimization, Tao Wu, Tony Tie Luo, Donald C. Wunsch Mar 2024

Cr-Sam: Curvature Regularized Sharpness-Aware Minimization, Tao Wu, Tony Tie Luo, Donald C. Wunsch

Computer Science Faculty Research & Creative Works

The Capacity to Generalize to Future Unseen Data Stands as One of the Utmost Crucial Attributes of Deep Neural Networks. Sharpness-Aware Minimization (SAM) Aims to Enhance the Generalizability by Minimizing Worst-Case Loss using One-Step Gradient Ascent as an Approximation. However, as Training Progresses, the Non-Linearity of the Loss Landscape Increases, Rendering One-Step Gradient Ascent Less Effective. on the Other Hand, Multi-Step Gradient Ascent Will Incur Higher Training Cost. in This Paper, We Introduce a Normalized Hessian Trace to Accurately Measure the Curvature of Loss Landscape on Both Training and Test Sets. in Particular, to Counter Excessive Non-Linearity of Loss Landscape, …


Lrs: Enhancing Adversarial Transferability Through Lipschitz Regularized Surrogate, Tao Wu, Tony Tie Luo, Donald C. Wunsch Mar 2024

Lrs: Enhancing Adversarial Transferability Through Lipschitz Regularized Surrogate, Tao Wu, Tony Tie Luo, Donald C. Wunsch

Computer Science Faculty Research & Creative Works

The Transferability of Adversarial Examples is of Central Importance to Transfer-Based Black-Box Adversarial Attacks. Previous Works for Generating Transferable Adversarial Examples Focus on Attacking Given Pretrained Surrogate Models While the Connections between Surrogate Models and Adversarial Trasferability Have Been overlooked. in This Paper, We Propose Lipschitz Regularized Surrogate (LRS) for Transfer-Based Black-Box Attacks, a Novel Approach that Transforms Surrogate Models towards Favorable Adversarial Transferability. using Such Transformed Surrogate Models, Any Existing Transfer-Based Black-Box Attack Can Run Without Any Change, Yet Achieving Much Better Performance. Specifically, We Impose Lipschitz Regularization on the Loss Landscape of Surrogate Models to Enable a Smoother …


Analyzing Biomedical Datasets With Symbolic Tree Adaptive Resonance Theory, Sasha Petrenko, Daniel B. Hier, Mary A. Bone, Tayo Obafemi-Ajayi, Erik J. Timpson, William E. Marsh, Michael Speight, Donald C. Wunsch Mar 2024

Analyzing Biomedical Datasets With Symbolic Tree Adaptive Resonance Theory, Sasha Petrenko, Daniel B. Hier, Mary A. Bone, Tayo Obafemi-Ajayi, Erik J. Timpson, William E. Marsh, Michael Speight, Donald C. Wunsch

Chemistry Faculty Research & Creative Works

Biomedical Datasets Distill Many Mechanisms Of Human Diseases, Linking Diseases To Genes And Phenotypes (Signs And Symptoms Of Disease), Genetic Mutations To Altered Protein Structures, And Altered Proteins To Changes In Molecular Functions And Biological Processes. It Is Desirable To Gain New Insights From These Data, Especially With Regard To The Uncovering Of Hierarchical Structures Relating Disease Variants. However, Analysis To This End Has Proven Difficult Due To The Complexity Of The Connections Between Multi-Categorical Symbolic Data. This Article Proposes Symbolic Tree Adaptive Resonance Theory (START), With Additional Supervised, Dual-Vigilance (DV-START), And Distributed Dual-Vigilance (DDV-START) Formulations, For The Clustering Of …


Continual Online Learning-Based Optimal Tracking Control Of Nonlinear Strict-Feedback Systems: Application To Unmanned Aerial Vehicles, Irfan Ganie, Sarangapani Jagannathan Mar 2024

Continual Online Learning-Based Optimal Tracking Control Of Nonlinear Strict-Feedback Systems: Application To Unmanned Aerial Vehicles, Irfan Ganie, Sarangapani Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

A novel optimal trajectory tracking scheme is introduced for nonlinear continuous-time systems in strict feedback form with uncertain dynamics by using neural networks (NNs). The method employs an actor-critic-based NN back-stepping technique for minimizing a discounted value function along with an identifier to approximate unknown system dynamics that are expressed in augmented form. Novel online weight update laws for the actor and critic NNs are derived by using both the NN identifier and Hamilton-Jacobi-Bellman residual error. A new continual lifelong learning technique utilizing the Fisher Information Matrix via Hamilton-Jacobi-Bellman residual error is introduced to obtain the significance of weights in …


Meta-Icvi: Ensemble Validity Metrics For Concise Labeling Of Correct, Under- Or Over-Partitioning In Streaming Clustering, Niklas M. Melton, Sasha A. Petrenko, Donald C. Wunsch Jan 2024

Meta-Icvi: Ensemble Validity Metrics For Concise Labeling Of Correct, Under- Or Over-Partitioning In Streaming Clustering, Niklas M. Melton, Sasha A. Petrenko, Donald C. Wunsch

Electrical and Computer Engineering Faculty Research & Creative Works

Understanding the performance and validity of clustering algorithms is both challenging and crucial, particularly when clustering must be done online. Until recently, most validation methods have relied on batch calculation and have required considerable human expertise in their interpretation. Improving real-time performance and interpretability of cluster validation, therefore, continues to be an important theme in unsupervised learning. Building upon previous work on incremental cluster validity indices (iCVIs), this paper introduces the Meta- iCVI as a tool for explainable and concise labeling of partition quality in online clustering. Leveraging a time-series classifier and data-fusion techniques, the Meta- iCVI combines the outputs …


Adaptive Resilient Control For A Class Of Nonlinear Distributed Parameter Systems With Actuator Faults, Hasan Ferdowsi, Jia Cai, Sarangapani Jagannathan Jan 2024

Adaptive Resilient Control For A Class Of Nonlinear Distributed Parameter Systems With Actuator Faults, Hasan Ferdowsi, Jia Cai, Sarangapani Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

This paper presents a new model-based fault resilient control scheme for a class of nonlinear distributed parameter systems (DPS) represented by parabolic partial differential equations (PDE) in the presence of actuator faults. A Luenberger-like observer on the basis of nonlinear PDE representation of DPS is developed with boundary measurements. A detection residual is generated by taking the difference between the measured output of the DPS and the estimated one given by the observer. Once a fault is detected, an unknown actuator fault parameter vector together with a known basis function is utilized to adaptively estimate the fault dynamics. A novel …


Qc-Sane: Robust Control In Drl Using Quantile Critic With Spiking Actor And Normalized Ensemble, Surbhi Gupta, Gaurav Singal, Deepak Garg, Sarangapani Jagannathan Sep 2023

Qc-Sane: Robust Control In Drl Using Quantile Critic With Spiking Actor And Normalized Ensemble, Surbhi Gupta, Gaurav Singal, Deepak Garg, Sarangapani Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

Recently Introduced Deep Reinforcement Learning (DRL) Techniques in Discrete-Time Have Resulted in Significant Advances in Online Games, Robotics, and So On. Inspired from Recent Developments, We Have Proposed an Approach Referred to as Quantile Critic with Spiking Actor and Normalized Ensemble (QC-SANE) for Continuous Control Problems, Which Uses Quantile Loss to Train Critic and a Spiking Neural Network (NN) to Train an Ensemble of Actors. the NN Does an Internal Normalization using a Scaled Exponential Linear Unit (SELU) Activation Function and Ensures Robustness. the Empirical Study on Multijoint Dynamics with Contact (MuJoCo)-Based Environments Shows Improved Training and Test Results Than …


Lifelong Learning-Based Multilayer Neural Network Control Of Nonlinear Continuous-Time Strict-Feedback Systems, Irfan Ahmad Ganie, S. (Sarangapani) Jagannathan Jan 2023

Lifelong Learning-Based Multilayer Neural Network Control Of Nonlinear Continuous-Time Strict-Feedback Systems, Irfan Ahmad Ganie, S. (Sarangapani) Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

In This Paper, We Investigate Lifelong Learning (LL)-Based Tracking Control for Partially Uncertain Strict Feedback Nonlinear Systems with State Constraints, employing a Singular Value Decomposition (SVD) of the Multilayer Neural Networks (MNNs) Activation Function based Weight Tuning Scheme. the Novel SVD-Based Approach Extends the MNN Weight Tuning to (Formula Presented.) Layers. a Unique Online LL Method, based on Tracking Error, is Integrated into the MNN Weight Update Laws to Counteract Catastrophic Forgetting. to Adeptly Address Constraints for Safety Assurances, Taking into Account the Effects Caused by Disturbances, We Utilize a Time-Varying Barrier Lyapunov Function (TBLF) that Ensures a Uniformly Ultimately …


Optimal Tracking Of Nonlinear Discrete-Time Systems Using Zero-Sum Game Formulation And Hybrid Learning, Behzad Farzanegan, S. (Sarangapani) Jagannathan Jan 2023

Optimal Tracking Of Nonlinear Discrete-Time Systems Using Zero-Sum Game Formulation And Hybrid Learning, Behzad Farzanegan, S. (Sarangapani) Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

This paper presents a novel hybrid learning-based optimal tracking method to address zero-sum game problems for partially uncertain nonlinear discrete-time systems. An augmented system and its associated discounted cost function are defined to address optimal tracking. Three multi-layer neural networks (NNs) are utilized to approximate the optimal control and the worst-case disturbance inputs, and the value function. The critic weights are tuned using the hybrid technique, whose weights are updated once at the sampling instants and in an iterative manner over finite times within the sampling instants. The proposed hybrid technique helps accelerate the convergence of the approximated value functional …


Lifelong Deep Learning-Based Control Of Robot Manipulators, Irfan Ganie, Jagannathan Sarangapani Jan 2023

Lifelong Deep Learning-Based Control Of Robot Manipulators, Irfan Ganie, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

This study proposes a lifelong deep learning control scheme for robotic manipulators with bounded disturbances. This scheme involves the use of an online tunable deep neural network (DNN) to approximate the unknown nonlinear dynamics of the robot. The control scheme is developed by using a singular value decomposition-based direct tracking error-driven approach, which is utilized to derive the weight update laws for the DNN. To avoid catastrophic forgetting in multi-task scenarios and to ensure lifelong learning (LL), a novel online LL scheme based on elastic weight consolidation is included in the DNN weight-tuning laws. Our results demonstrate that the resulting …


Towards Robust Consensus For Intelligent Decision-Making In Iot Blockchain Networks, Charles Rawlins, S. (Sarangapani) Jagannathan Jan 2023

Towards Robust Consensus For Intelligent Decision-Making In Iot Blockchain Networks, Charles Rawlins, S. (Sarangapani) Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

Distributed consensus is the core aspect of blockchain protocol security design. Recent protocols like IOTA have improved concurrency and scalability over Proof-of-work (PoW) with Bitcoin but have core design decisions that are inefficient for limited devices and do not take advantage of previous network experience to reduce calculations. This work proposes the first blockchain consensus protocol based on active machine-learning decisions, called Proof-of-history (PoH). PoH is setup as a distributed reinforcement-learning task for monitoring classification and training of blockchain transactions with an inner deep classifier. Early theoretical analysis and simulations show that PoH is robust to uncoordinated byzantine attacks through …


Personalizing Student Graduation Paths Using Expressed Student Interests, Nicolas Dobbins, Ali R. Hurson, Sahra Sedigh Jan 2023

Personalizing Student Graduation Paths Using Expressed Student Interests, Nicolas Dobbins, Ali R. Hurson, Sahra Sedigh

Electrical and Computer Engineering Faculty Research & Creative Works

This paper proposes an intelligent recommendation approach to facilitate personalized education and help students in planning their path to graduation. The goal is to identify a path that aligns with a student's interests and career goals and approaches optimality with respect to one or more criteria, such as time-to-graduation or credit hours taken. The approach is illustrated and verified through application to undergraduate curricula at the Missouri University of Science and Technology.


Continual Learning-Based Optimal Output Tracking Of Nonlinear Discrete-Time Systems With Constraints: Application To Safe Cargo Transfer, Behzad Farzanegan, S. (Sarangapani) Jagannathan Jan 2023

Continual Learning-Based Optimal Output Tracking Of Nonlinear Discrete-Time Systems With Constraints: Application To Safe Cargo Transfer, Behzad Farzanegan, S. (Sarangapani) Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

This Paper Addresses a Novel Lifelong Learning (LL)-Based Optimal Output Tracking Control of Uncertain Non-Linear Affine Discrete-Time Systems (DT) with State Constraints. First, to Deal with Optimal Tracking and Reduce the Steady State Error, a Novel Augmented System, Including Tracking Error and its Integral Value and Desired Trajectory, is Proposed. to Guarantee Safety, an Asymmetric Barrier Function (BF) is Incorporated into the Utility Function to Keep the Tracking Error in a Safe Region. Then, an Adaptive Neural Network (NN) Observer is Employed to Estimate the State Vector and the Control Input Matrix of the Uncertain Nonlinear System. Next, an NN-Based …


Securing The Transportation Of Tomorrow: Enabling Self-Healing Intelligent Transportation, Elanor Jackson, Sahra Sedigh Sarvestani Jan 2023

Securing The Transportation Of Tomorrow: Enabling Self-Healing Intelligent Transportation, Elanor Jackson, Sahra Sedigh Sarvestani

Electrical and Computer Engineering Faculty Research & Creative Works

The safety of autonomous vehicles relies on dependable and secure infrastructure for intelligent transportation. The doctoral research described in this paper aims to enable self-healing and survivability of the intelligent transportation systems required for autonomous vehicles (AV-ITS). The proposed approach is comprised of four major elements: qualitative and quantitative modeling of the AV-ITS, stochastic analysis to capture and quantify interdependencies, mitigation of disruptions, and validation of efficacy of the self-healing process. This paper describes the overall methodology and presents preliminary results, including an agent-based model for detection of and recovery from disruptions to the AV-ITS.


Rafid: A Lightweight Approach To Radio Frequency Interference Detection In Time Domain Using Lstm And Statistical Analysis, Luke A. Smith, Vishesh Kumar Tanwar, Maciej Jan Zawodniok, Sanjay Kumar Madria Jan 2023

Rafid: A Lightweight Approach To Radio Frequency Interference Detection In Time Domain Using Lstm And Statistical Analysis, Luke A. Smith, Vishesh Kumar Tanwar, Maciej Jan Zawodniok, Sanjay Kumar Madria

Electrical and Computer Engineering Faculty Research & Creative Works

Recently, the utilization of Radio Frequency (RF) devices has increased exponentially over numerous vertical platforms. This rise has led to an abundance of Radio Frequency Interference (RFI) continues to plague RF systems today. The continued crowding of the RF spectrum makes RFI efficient and lightweight mitigation critical. Detecting and localizing the interfering signals is the foremost step for mitigating RFI concerns. Addressing these challenges, we propose a novel and lightweight approach, namely RaFID, to detect and locate the RFI by incorporating deep neural networks (DNNs) and statistical analysis via batch-wise mean aggregation and standard deviation (SD) calculations. RaFID investigates the …


Lifelong Learning Control Of Nonlinear Systems With Constraints Using Multilayer Neural Networks With Application To Mobile Robot Tracking, Irfan Ganie, S. (Sarangapani) Jagannathan Jan 2023

Lifelong Learning Control Of Nonlinear Systems With Constraints Using Multilayer Neural Networks With Application To Mobile Robot Tracking, Irfan Ganie, S. (Sarangapani) Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

This Paper Presents a Novel Lifelong Multilayer Neural Network (MNN) Tracking Approach for an Uncertain Nonlinear Continuous-Time Strict Feedback System that is Subject to Time-Varying State Constraints. the Proposed Method Uses a Time-Varying Barrier Function to Accommodate the Constraints Leading to the Development of an Efficient Control Scheme. the Unknown Dynamics Are Approximated using a MNN, with Weights Tuned using a Singular Value Decomposition (SVD)-Based Technique. an Online Lifelong Learning (LL) based Elastic Weight Consolidation (EWC) Scheme is Also Incorporated to Alleviate the Issue of Catastrophic Forgetting. the Stability of the overall Closed-Loop System is Analyzed using Lyapunov Analysis. the …


Improved Intelligent Ledger Construction For Realistic Iot Blockchain Networks, Charles Rawlins, S. (Sarangapani) Jagannathan Jan 2023

Improved Intelligent Ledger Construction For Realistic Iot Blockchain Networks, Charles Rawlins, S. (Sarangapani) Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

Scalability is essential for next generation blockchain technology to integrate with large mobile networks like Internet of Things (IoT). The IOTA distributed ledger protocol has combined transaction generation and verification to address this, but at the expense of increased reliance on connectivity to resolve conflicts with a novel ledger data structure. Intelligent Ledger Construction (ILC) was proposed as an auditable lightweight reinforcement-learning scheme to address this constraint with proposal of local conflict resolution with machine-learning classification. This effort presents an improved reliability reward model to enhance training for ILC and further reduce adversarial gaming and resource usage. Testing this revision …


Continual Reinforcement Learning Formulation For Zero-Sum Game-Based Constrained Optimal Tracking, Behzad Farzanegan, Sarangapani Jagannathan Jan 2023

Continual Reinforcement Learning Formulation For Zero-Sum Game-Based Constrained Optimal Tracking, Behzad Farzanegan, Sarangapani Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

This study provides a novel reinforcement learning-based optimal tracking control of partially uncertain nonlinear discrete-time (DT) systems with state constraints using zero-sum game (ZSG) formulation. To address optimal tracking, a novel augmented system consisting of tracking error and its integral value, along with an uncertain desired trajectory, is constructed. A barrier function (BF) with a tradeoff factor is incorporated into the cost function to keep the state trajectories to remain within a compact set and to balance safety with optimality. Next, by using the modified value functional, the ZSG formulation is introduced wherein an actor–critic neural network (NN) framework is …


Continual Optimal Adaptive Tracking Of Uncertain Nonlinear Continuous-Time Systems Using Multilayer Neural Networks, Irfan Ganie, S. (Sarangapani) Jagannathan Jan 2023

Continual Optimal Adaptive Tracking Of Uncertain Nonlinear Continuous-Time Systems Using Multilayer Neural Networks, Irfan Ganie, S. (Sarangapani) Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

This study provides a lifelong integral reinforcement learning (LIRL)-based optimal tracking scheme for uncertain nonlinear continuous-time (CT) systems using multilayer neural network (MNN). In this LIRL framework, the optimal control policies are generated by using both the critic neural network (NN) weights and single-layer NN identifier. The critic MNN weight tuning is accomplished using an improved singular value decomposition (SVD) of its activation function gradient. The NN identifier, on the other hand, provides the control coefficient matrix for computing the control policies. An online weight velocity attenuation (WVA)-based consolidation scheme is proposed wherein the significance of weights is derived by …


Optimal Adaptive Tracking Control Of Partially Uncertain Nonlinear Discrete-Time Systems Using Lifelong Hybrid Learning, Behzad Farzanegan, Rohollah Moghadam, Sarangapani Jagannathan, Pappa Natarajan Jan 2023

Optimal Adaptive Tracking Control Of Partially Uncertain Nonlinear Discrete-Time Systems Using Lifelong Hybrid Learning, Behzad Farzanegan, Rohollah Moghadam, Sarangapani Jagannathan, Pappa Natarajan

Electrical and Computer Engineering Faculty Research & Creative Works

This article addresses a multilayer neural network (MNN)-based optimal adaptive tracking of partially uncertain nonlinear discrete-time (DT) systems in affine form. By employing an actor–critic neural network (NN) to approximate the value function and optimal control policy, the critic NN is updated via a novel hybrid learning scheme, where its weights are adjusted once at a sampling instant and also in a finite iterative manner within the instants to enhance the convergence rate. Moreover, to deal with the persistency of excitation (PE) condition, a replay buffer is incorporated into the critic update law through concurrent learning. To address the vanishing …


An Explainable And Statistically Validated Ensemble Clustering Model Applied To The Identification Of Traumatic Brain Injury Subgroups, Dacosta Yeboah, Louis Steinmeister, Daniel B. Hier, Bassam Hadi, Donald C. Wunsch, Gayla R. Olbricht, Tayo Obafemi-Ajayi Sep 2020

An Explainable And Statistically Validated Ensemble Clustering Model Applied To The Identification Of Traumatic Brain Injury Subgroups, Dacosta Yeboah, Louis Steinmeister, Daniel B. Hier, Bassam Hadi, Donald C. Wunsch, Gayla R. Olbricht, Tayo Obafemi-Ajayi

Electrical and Computer Engineering Faculty Research & Creative Works

We present a framework for an explainable and statistically validated ensemble clustering model applied to Traumatic Brain Injury (TBI). The objective of our analysis is to identify patient injury severity subgroups and key phenotypes that delineate these subgroups using varied clinical and computed tomography data. Explainable and statistically-validated models are essential because a data-driven identification of subgroups is an inherently multidisciplinary undertaking. In our case, this procedure yielded six distinct patient subgroups with respect to mechanism of injury, severity of presentation, anatomy, psychometric, and functional outcome. This framework for ensemble cluster analysis fully integrates statistical methods at several stages of …


Evaluation Of Standard And Semantically-Augmented Distance Metrics For Neurology Patients, Daniel B. Hier, Jonathan Kopel, Steven U. Brint, Donald C. Wunsch, Gayla R. Olbricht, Sima Azizi, Blaine Allen Aug 2020

Evaluation Of Standard And Semantically-Augmented Distance Metrics For Neurology Patients, Daniel B. Hier, Jonathan Kopel, Steven U. Brint, Donald C. Wunsch, Gayla R. Olbricht, Sima Azizi, Blaine Allen

Electrical and Computer Engineering Faculty Research & Creative Works

Background: Patient distances can be calculated based on signs and symptoms derived from an ontological hierarchy. There is controversy as to whether patient distance metrics that consider the semantic similarity between concepts can outperform standard patient distance metrics that are agnostic to concept similarity. The choice of distance metric can dominate the performance of classification or clustering algorithms. Our objective was to determine if semantically augmented distance metrics would outperform standard metrics on machine learning tasks.

Methods: We converted the neurological findings from 382 published neurology cases into sets of concepts with corresponding machine-readable codes. We calculated patient distances by …


System Efficient Esd Design Concept For Soft Failures, Giorgi Maghlakelidze Jan 2020

System Efficient Esd Design Concept For Soft Failures, Giorgi Maghlakelidze

Doctoral Dissertations

"This research covers the topic of developing a systematic methodology of studying electrostatic discharge (ESD)-induced soft failures. ESD-induced soft failures (SF) are non-destructive disruptions of the functionality of an electronic system. The soft failure robustness of a USB3 Gen 1 interface is investigated, modeled, and improved. The injection is performed directly using transmission line pulser (TLP) with varying: pulse width, amplitude, polarity. Characterization provides data for failure thresholds and a SPICE circuit model that describes the transient voltage and current at the victim. Using the injected current, the likelihood of a SF is predicted. ESD protection by transient voltage suppressor …


Deep Neural Network Learning-Based Classifier Design For Big-Data Analytics, Krishnan Raghavan Jan 2019

Deep Neural Network Learning-Based Classifier Design For Big-Data Analytics, Krishnan Raghavan

Doctoral Dissertations

"In this digital age, big-data sets are commonly found in the field of healthcare, manufacturing and others where sustainable analysis is necessary to create useful information. Big-data sets are often characterized by high-dimensionality and massive sample size. High dimensionality refers to the presence of unwanted dimensions in the data where challenges such as noise, spurious correlation and incidental endogeneity are observed. Massive sample size, on the other hand, introduces the problem of heterogeneity because complex and unstructured data types must analyzed. To mitigate the impact of these challenges while considering the application of classification, a two step analysis approach is …


Classification Of Basal Cell Carcinoma Using Telangiectatic Vessels And Machine Learning, Hemanth Yadav Aradhyula Jan 2017

Classification Of Basal Cell Carcinoma Using Telangiectatic Vessels And Machine Learning, Hemanth Yadav Aradhyula

Masters Theses

“Basal cell carcinoma (BCC) is one of the most common types of skin cancer in the United States. Early detection of BCC by noninvasive techniques can decrease delay in treatment and save cost. A recent study estimated that 5.4 million cases of non-melanocytic skin cancer (NMSC) occur each year in the US. BCC accounts for 50% of NMSC cases. Telangiectasia, which appears in most BCCs is an important feature for identification of BCC for an automatic diagnostic system. In this thesis, three methods for detection of telangiectasia present in dermoscopy lesion image (DI) were proposed. Detected telangiectasia in DI was …


Application Of Nearly Linear Solvers To Electric Power System Computation, Lisa L. Grant Jan 2017

Application Of Nearly Linear Solvers To Electric Power System Computation, Lisa L. Grant

Doctoral Dissertations

"To meet the future needs of the electric power system, improvements need to be made in the areas of power system algorithms, simulation, and modeling, specifically to achieve a time frame that is useful to industry. If power system time-domain simulations could run in real-time, then system operators would have situational awareness to implement and avoid cascading failures, significantly improving power system reliability. Several power system applications rely on the solution of a very large linear system. As the demands on power systems continue to grow, there is a greater computational complexity involved in solving these large linear systems within …


Shape Analysis Of Traffic Flow Curves Using A Hybrid Computational Analysis, Wasim Irshad Kayani, Shikhar P. Acharya, Ivan G. Guardiola, Donald C. Wunsch, B. Schumacher, Isaac Wagner-Muns Nov 2016

Shape Analysis Of Traffic Flow Curves Using A Hybrid Computational Analysis, Wasim Irshad Kayani, Shikhar P. Acharya, Ivan G. Guardiola, Donald C. Wunsch, B. Schumacher, Isaac Wagner-Muns

Engineering Management and Systems Engineering Faculty Research & Creative Works

This paper highlights and validates the use of shape analysis using Mathematical Morphology tools as a means to develop meaningful clustering of historical data. Furthermore, through clustering more appropriate grouping can be accomplished that can result in the better parameterization or estimation of models. This results in more effective prediction model development. Hence, in an effort to highlight this within the research herein, a Back-Propagation Neural Network is used to validate the classification achieved through the employment of MM tools. Specifically, the Granulometric Size Distribution (GSD) is used to achieve clustering of daily traffic flow patterns based solely on their …


Detecting, Segmenting And Tracking Bio-Medical Objects, Mingzhong Li Jan 2016

Detecting, Segmenting And Tracking Bio-Medical Objects, Mingzhong Li

Doctoral Dissertations

"Studying the behavior patterns of biomedical objects helps scientists understand the underlying mechanisms. With computer vision techniques, automated monitoring can be implemented for efficient and effective analysis in biomedical studies. Promising applications have been carried out in various research topics, including insect group monitoring, malignant cell detection and segmentation, human organ segmentation and nano-particle tracking.

In general, applications of computer vision techniques in monitoring biomedical objects include the following stages: detection, segmentation and tracking. Challenges in each stage will potentially lead to unsatisfactory results of automated monitoring. These challenges include different foreground-background contrast, fast motion blur, clutter, object overlap and …


Clustering Data Of Mixed Categorical And Numerical Type With Unsupervised Feature Learning, Dao Lam, Mingzhen Wei, Donald C. Wunsch Sep 2015

Clustering Data Of Mixed Categorical And Numerical Type With Unsupervised Feature Learning, Dao Lam, Mingzhen Wei, Donald C. Wunsch

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

Mixed-type categorical and numerical data are a challenge in many applications. This general area of mixed-type data is among the frontier areas, where computational intelligence approaches are often brittle compared with the capabilities of living creatures. In this paper, unsupervised feature learning (UFL) is applied to the mixed-type data to achieve a sparse representation, which makes it easier for clustering algorithms to separate the data. Unlike other UFL methods that work with homogeneous data, such as image and video data, the presented UFL works with the mixed-type data using fuzzy adaptive resonance theory (ART). UFL with fuzzy ART (UFLA) obtains …