Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Electrical and Computer Engineering

A New Approach For Homomorphic Encryption With Secure Function Evaluation On Genomic Data, Mounika Pratapa Aug 2020

A New Approach For Homomorphic Encryption With Secure Function Evaluation On Genomic Data, Mounika Pratapa

Electronic Thesis and Dissertation Repository

Additively homomorphic encryption is a public-key primitive allowing a sum to be computed on encrypted values. Although limited in functionality, additive schemes have been an essential tool in the private function evaluation toolbox for decades. They are typically faster and more straightforward to implement relative to their fully homomorphic counterparts, and more efficient than garbled circuits in certain applications. This thesis presents a novel method for extending the functionality of additively homomorphic encryption to allow the private evaluation of functions of restricted domain. Provided the encrypted sum falls within the restricted domain, the function can be homomorphically evaluated “for free” …


Terramechanics And Machine Learning For The Characterization Of Terrain, Bryan W. Southwell Aug 2020

Terramechanics And Machine Learning For The Characterization Of Terrain, Bryan W. Southwell

Electronic Thesis and Dissertation Repository

An instrumented rover wheel can collect vast amounts of data about a planetary surface. Planetary surfaces are changed by complex geological processes which can be better understood with an abundance of surface data and the use of terramechanics. Identifying terrain parameters such as cohesion and angle of friction hold importance for both the rover driver and the planetary scientist. Knowledge of terrain characteristics can warn of unsafe terrain and flag potential interesting scientific sites. The instrumented wheel in this research utilizes a pressure pad to sense load and sinkage, a string potentiometer to measure slip, and records motor current draw. …


Optimized Machine Learning Models Towards Intelligent Systems, Mohammadnoor Ahmad Mohammad Injadat Jul 2020

Optimized Machine Learning Models Towards Intelligent Systems, Mohammadnoor Ahmad Mohammad Injadat

Electronic Thesis and Dissertation Repository

The rapid growth of the Internet and related technologies has led to the collection of large amounts of data by individuals, organizations, and society in general [1]. However, this often leads to information overload which occurs when the amount of input (e.g. data) a human is trying to process exceeds their cognitive capacities [2]. Machine learning (ML) has been proposed as one potential methodology capable of extracting useful information from large sets of data [1]. This thesis focuses on two applications. The first is education, namely e-Learning environments. Within this field, this thesis proposes different optimized ML ensemble models to …


Edge-Cloud Iot Data Analytics: Intelligence At The Edge With Deep Learning, Ananda Mohon M. Ghosh May 2020

Edge-Cloud Iot Data Analytics: Intelligence At The Edge With Deep Learning, Ananda Mohon M. Ghosh

Electronic Thesis and Dissertation Repository

Rapid growth in numbers of connected devices, including sensors, mobile, wearable, and other Internet of Things (IoT) devices, is creating an explosion of data that are moving across the network. To carry out machine learning (ML), IoT data are typically transferred to the cloud or another centralized system for storage and processing; however, this causes latencies and increases network traffic. Edge computing has the potential to remedy those issues by moving computation closer to the network edge and data sources. On the other hand, edge computing is limited in terms of computational power and thus is not well suited for …


Geometric State Observers For Autonomous Navigation Systems, Miaomiao Wang Jan 2020

Geometric State Observers For Autonomous Navigation Systems, Miaomiao Wang

Electronic Thesis and Dissertation Repository

The development of reliable state estimation algorithms for autonomous navigation systems is of great interest in the control and robotics communities. This thesis studies the state estimation problem for autonomous navigation systems. The first part of this thesis is devoted to the pose estimation on the Special Euclidean group $\SE(3)$. A generic globally exponentially stable hybrid estimation scheme for pose (orientation and position) and velocity-bias estimation on $\SE(3)\times \mathbb{R}^6$ is proposed. Moreover, an explicit hybrid observer, using inertial and landmark position measurements, is provided.

The second part of this thesis is devoted to the problem of simultaneous estimation of the …