Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Electrical and Computer Engineering

Ionic Liquid Assisted Synthesis Of Porous Carbons From Rice Husk For Supercapacitors, Han-Fang Zhang, Feng Wei, Jian Sun, Meng-Ying Jing, Xiao-Jun He Dec 2019

Ionic Liquid Assisted Synthesis Of Porous Carbons From Rice Husk For Supercapacitors, Han-Fang Zhang, Feng Wei, Jian Sun, Meng-Ying Jing, Xiao-Jun He

Journal of Electrochemistry

It is still a challenge to prepare carbon materials with high specific surface area at low cost from renewable resources. Herein, the authors report an efficient approach to synthesize porous carbons (PCs) from rice husk with ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6)) as a template and an activation agent. The as-made PCs featured the high specific surface area up to 1438 m2·g-1. As electrodes for supercapacitors, PCs showed a high specific capacitance of 256 F·g-1 at 0.05 A·g-1 in 6 mol·L-1 KOH aqueous electrolyte and a good rate performance of 211 F·g …


Transition Metal Dichalcogenide For High-Performance Electrode Of Supercapacitor, Saifful Kamaluddin Muzakir, Ahmad Salihin Samsudin, Bouchta Sahraoui Dec 2018

Transition Metal Dichalcogenide For High-Performance Electrode Of Supercapacitor, Saifful Kamaluddin Muzakir, Ahmad Salihin Samsudin, Bouchta Sahraoui

Makara Journal of Technology

Molybdenum dichalcogenides have been reviewed from the perspectives of bandgap, conductivity, and oxidation states of transition metal. Researchers have concluded that a narrow-bandgap transition metal dichalcogenide with high conductivity could be achieved for the high-performance electrode of a supercapacitor.


Preparation And Properties Of Manganese Oxide And Polyaniline-Carbon Composite Electrode, Tian-Tian Zhou, Bing Wu, Chao Deng, Ying Gao Apr 2018

Preparation And Properties Of Manganese Oxide And Polyaniline-Carbon Composite Electrode, Tian-Tian Zhou, Bing Wu, Chao Deng, Ying Gao

Journal of Electrochemistry

The polyaniline-carbon (PAnC) electrode was prepared by the polymerization of aniline monomer and activated carbon in ice water bath, and followed by chemical deposition of manganese dioxide MnO2-PAnC composite material. The specific capacitance of MnO2-PAnC reached 459 F•g-1. The cyclic voltammetric results showed a small deformation in the voltammogram curve obtained with the MnO2-PAnC electrode at high scan rate, indicating good reversibility and capacitive properties. The AC impedance results revealed that the MnO2-PAnC electrode displayed the smallest charge transfer resistance and the fastest diffusion
rate of surface ions than other …


Electrochemical Synthesis Of Porous Polyaniline Electrodes Using Hkust-1 As A Template And Their Electrochemical Supercapacitor Property, Qiong Luan, Chun-Feng Xue, Hong-Ye Zhu, Fu-Juan Yang, Xu-Li Ma, Xiao-Gang Hao Feb 2017

Electrochemical Synthesis Of Porous Polyaniline Electrodes Using Hkust-1 As A Template And Their Electrochemical Supercapacitor Property, Qiong Luan, Chun-Feng Xue, Hong-Ye Zhu, Fu-Juan Yang, Xu-Li Ma, Xiao-Gang Hao

Journal of Electrochemistry

Excellent electrode plays vital important role in the performance of supercapacitors. Polyaniline (PANI) with good conductivity is often used to prepare electrode. However, its available surface is limited and results in a poor supercapacitance in many cases. It is desirable to fabricate an electrode containing electroactive PANI with high surface area deriving from its porous structure. Here, the metal-organic framework (MOF) material with high surface area was selected as a hard template for synthesizing porous PANI. Microporous PANI composite electrodes (Micro-PANI/CC) were fabricated by depositing aniline on to carbon cloth (CC) pre-coated with MOF material of HKUST-1 using a unipolar …


Reduced Graphene Oxide (Rgo) Hollow Network Cages For High-Performance Electrochemical Energy Storage, Chi Zhang, Xu-Jun He, Gao-Ren Li Jun 2016

Reduced Graphene Oxide (Rgo) Hollow Network Cages For High-Performance Electrochemical Energy Storage, Chi Zhang, Xu-Jun He, Gao-Ren Li

Journal of Electrochemistry

The reduced graphese oxide (RGO) hollow network cages were synthesized via zinc oxide (ZnO) template-assisted electrodeposition. The as-prepared RGO hollow network cages exhibited the multi-level architectures, from nano sheets, porous structures, networks, to 3D microscaled hollow cages, which can simultaneously optimize transport of electroactive species, utilization rate of electrode material, and super capacitive performance. Electrochemical measurements confirmed the superior performance of RGO hollow network cages for supercapacitors (SCs), such as high Csp (393 F•g-1 at 1.0 A•g-11), excellent rate capability (21.2% Csp loss from 1.0 to 20 A•g-1), and superior cycling stability (< 1% Csp loss after 10000 cycles).


Comparison In Factors Affecting Electrochemical Properties Of Thermal-Reduced Graphene Oxide For Supercapacitors, Peng Xiao, Da-Hui Wang, Jun-Wei Lang Dec 2014

Comparison In Factors Affecting Electrochemical Properties Of Thermal-Reduced Graphene Oxide For Supercapacitors, Peng Xiao, Da-Hui Wang, Jun-Wei Lang

Journal of Electrochemistry

In this paper, thermal-reduced graphene oxide (T-RGO) materials are synthesized by modified Hummer’s method, followed by thermal reduction under argon atmosphere at different temperatures. Electrochemical investigations show that, for T-RGO electrodes, good electrical conductivity is necessary and the surface functional groups play more significant role than the specific surface area in determining the electrochemical capacitance. The T-RGO obtained at 900 °C (T-RGO900) with a relatively high Brunauer-Emmett-Teller (BET) surface area (314 m2·g-1) and a high electrical conductivity (2421 S·m-1) shows a low specific capacitance of 56 F·g-1. In comparison, the T-RGO obtained …


Electrochemical Performances Of Layered Polypyrrole/Chemically Reduced Graphene Oxide Nanocomposites As Supercapacitor Electrodes, Si-Zhe Xu, Xue-Jiao Zhou, Kun Wu, Yong-Qiang Yang, Hai-Xia Wu Aug 2012

Electrochemical Performances Of Layered Polypyrrole/Chemically Reduced Graphene Oxide Nanocomposites As Supercapacitor Electrodes, Si-Zhe Xu, Xue-Jiao Zhou, Kun Wu, Yong-Qiang Yang, Hai-Xia Wu

Journal of Electrochemistry

Nanocomposites of polypyrrole (Ppy) and chemically reduced graphene oxide (CRGO), Ppy/CRGO, have been fabricated through in-situ polymerization of pyrrole on graphene oxide (GO) sheets. The as-synthesized Ppy/CRGO composites were characterized complementarily using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier transformed infrared spectroscopy (FT-IR). By controlling the initial ratio of the GO to pyrrole, the layered composites could be obtained and their thickness could be tuned properly. The Ppy/CRGO electrodes were prepared using a mechanical compressing technique and their electrical conductivity and electrochemical properties were characterized systematically. We demonstrated that as electrodes for supercapacitor, the Ppy/CRGO composites with Ppy …


Synthesis Of Spherical Ni3S4 By Solvothermal Method As Supercapacitor Electrodes, Qing-Na Huan, Li-Fang Jiao, Qing-Hong Wang, Hong-Mei Du, Jia-Qin Yang, Wen-Xiu Peng, Yi-Jing Wang, Hua-Tang Yuan Jun 2012

Synthesis Of Spherical Ni3S4 By Solvothermal Method As Supercapacitor Electrodes, Qing-Na Huan, Li-Fang Jiao, Qing-Hong Wang, Hong-Mei Du, Jia-Qin Yang, Wen-Xiu Peng, Yi-Jing Wang, Hua-Tang Yuan

Journal of Electrochemistry

The Ni3S4 microspheres have been synthesized via a facile solvothermal method. The crystal structure and surface morphology are characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Microspherical Ni3S4 exhibits good electrochemical capacitance validated by electrochemical measurements. The specific capacities of 1120.6 F.g-1 at 0.5 A.g-1 and 433.4 F.g-1 at 4 A.g-1 with the capacitance retention of 89.37 % and 84.88 % were obtained after 1000 cycles, respectively. The electrochemical reaction is expected due to the transformation of Ni(OH)2 and NiOOH based on the XRD, XPS and CV analysis results.


Template-Free Synthesis Of Porous Nio Hierarchical Structure For High Performance Supercapacitors, Yun Huang, Zhong Wu, Xin-Bo Zhang Apr 2012

Template-Free Synthesis Of Porous Nio Hierarchical Structure For High Performance Supercapacitors, Yun Huang, Zhong Wu, Xin-Bo Zhang

Journal of Electrochemistry

A facile and template-free hydrothermal method is proposed to successfully synthesize porous NiO hierarchical structure, which is found to be assembled from ultrathin NiO nanosheets. As for electrochemical pseudocapacitor application, the obtained material exhibits not only high specific capacitances of 435 F?g-1 at 20 mV?s-1 and 367 F?g-1 at 10 A?g-1, but also holds a good electrochemical stability over 1000 cycles at a current rate of 20 mV?s-1. These results suggest that the hierarchical structured porous NiO is a promising supercapacitor electrode material.


Synthesis Of Mesoporous Nickel Oxide For Supercapacitor Application, Xuan-Xuan Chen, Zhen-Zhen Zhao, Deng-Chao Wang, Zhong-Jie Huang, Wen-Bin Ni, Li Yu, Jian-Wei Zhao Feb 2011

Synthesis Of Mesoporous Nickel Oxide For Supercapacitor Application, Xuan-Xuan Chen, Zhen-Zhen Zhao, Deng-Chao Wang, Zhong-Jie Huang, Wen-Bin Ni, Li Yu, Jian-Wei Zhao

Journal of Electrochemistry

Mesoporous nickel oxide has been synthesized by calcining metal-organic coordination precursor.Transmission electron microscopy and BET test showed that the prepared NiO had a regular morphology and displayed a narrow size distribution.Electrochemical tests revealed that such mesoporous NiO had a specific capacity of 72 F·g-1 at the current of 2.0 A·g-1.Futhermore,the material showed excellent cycle-life stability.There was no degradation of capacitance after 1000 cycles.


Synthesis Of Α-Mno_2 Microspheres For The Application In Supercapacitor, Liang Wang, Gui-Chang Liu, Zhi-Cong Shi Nov 2009

Synthesis Of Α-Mno_2 Microspheres For The Application In Supercapacitor, Liang Wang, Gui-Chang Liu, Zhi-Cong Shi

Journal of Electrochemistry

The MnO2 microspheres were prepared through the oxidation of KMnO4 and MnCO3 microspheres precursor.The microstructure and supercapacitor properties of MnO2 were characterized by XRD,SEM and CV.The results show that MnO2 was in a poorly crystalline state with α-crystallographic form,the size of microspheres typically ranged from 0.5 to 2 μm.Loading 5 mg·cm-2 MnO2 microspheres had excellent capacitance behaviors in 2 mol·L-1(NH4)2SO4 solution.The specific capacitance was 135.6 F·g-1 with the scan rate at 2 mV·s-1,and 118.8 F·g-1 with the large scan rate at 100 mV/s.Coulumbic efficiency was still above 87.8% in the 500 cycles,and the specific capacitance of the 500th cycle was …


The Syntheses And Electrochemical Performance Of Nano-Mno_2 For Supercapacitor, Jun Ma, Ming-Sen Zheng, Quan-Feng Dong Aug 2007

The Syntheses And Electrochemical Performance Of Nano-Mno_2 For Supercapacitor, Jun Ma, Ming-Sen Zheng, Quan-Feng Dong

Journal of Electrochemistry

Nano-manganese dioxide were prepared by two different methods which are low temperature solid reaction and chemical deposition.The products were characterized by XRD,SEM,BET and constant current charge-discharge tests.The result shows that there is a close relationship between specific capacitance and BET surface areas.Meanwhile the specific capacitance was impacted little by the structure of the nano-manganese dioxides.However,the product performance of high rates,was influenced by structure,the higher rate can be obtained with the more perfect crystal structure.