Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering

Oxygen reduction reaction

Articles 1 - 30 of 47

Full-Text Articles in Electrical and Computer Engineering

Preparation And Electrocatalytic Performance Of Feni-Cop/Nc Bifunctional Catalyst, Si-Miao Liu, Jing-Jiao Zhou, Shi-Jun Ji, Zhong-Sheng Wen Oct 2023

Preparation And Electrocatalytic Performance Of Feni-Cop/Nc Bifunctional Catalyst, Si-Miao Liu, Jing-Jiao Zhou, Shi-Jun Ji, Zhong-Sheng Wen

Journal of Electrochemistry

Rechargeable zinc-air batteries have gradually attracted much attention worldwide due to their high capacity, high energy density and low price. Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) correspond to the charging and discharging processes in rechargeable zinc-air battery, respectively. At present, commercial Pt/C and IrO2 catalysts hinder the large-scale application of zinc-air batteries due to low reserves, high prices and poor stability. Therefore, exploring high performance, low cost and high stability with dual functional catalysts is important for the development of rechargeable zinc-Air batteries. The metal-organic frameworks (MOFs) have high specific surface area, structural stability, good catalytic …


Recent Progress Of Bifunctional Electrocatalysts For Oxygen Electrodes In Unitized Regenerative Fuel Cells, Tian-Long Zheng, Ming-Yu Ou, Song Xu, Xin-Biao Mao, Shi-Yi Wang, Qing-Gang He Jul 2023

Recent Progress Of Bifunctional Electrocatalysts For Oxygen Electrodes In Unitized Regenerative Fuel Cells, Tian-Long Zheng, Ming-Yu Ou, Song Xu, Xin-Biao Mao, Shi-Yi Wang, Qing-Gang He

Journal of Electrochemistry

Unitized regenerative fuel cells (URFCs), which oxidize hydrogen to water to generate electrical power under thefuel cells (FCs) mode and electrolyze water to hydrogen under the water electrolysis (WE) mode for recycling, areknown as clean and sustainable energy conversion devices. In contrast to the hydrogen oxidation reaction (HOR) andhydrogen evolution reaction (HER) on the hydrogen electrode side, the sluggish kinetics of oxygen reduction reaction(ORR) and oxygen evolution reaction (OER) on the oxygen electrode side requires highly efficient bifunctional oxygencatalysts. Conventional precious metal oxygen catalysts combine Pt and IrO2 with excellent ORR and OER activities toachieve bifunctional electrocatalysis performance, but …


Adjusting The Alloying Degree Of Pt3Zn To Improve Acid Oxygen Reduction Activity And Stability, Tian-En Zhang, Ya-Ni Yan, Jun-Ming Zhang, Xi-Ming Qu, Yan-Rong Li, Yan-Xia Jiang Apr 2022

Adjusting The Alloying Degree Of Pt3Zn To Improve Acid Oxygen Reduction Activity And Stability, Tian-En Zhang, Ya-Ni Yan, Jun-Ming Zhang, Xi-Ming Qu, Yan-Rong Li, Yan-Xia Jiang

Journal of Electrochemistry

Proton exchange membrane fuel cell (PEMFC) is a new type of energy device, a relatively excellent way to achieve carbon neutrality. However, due to the relatively slow reaction rate of oxygen reduction reaction (ORR) at the cathode, platinum (Pt) is the key material of the cathode catalyst. However, Pt is a kind of noble metal, and its high cost restricts the PEMFC commercialization process. At present, the main approach is to combine transition metals with Pt to prepare Pt-based alloys and to reduce the use of Pt. Pt-based alloys are excellent catalysts for ORR, improving both the activity and stability, …


In Situ Characterization Of Electrode Structure And Catalytic Processes In The Electrocatalytic Oxygen Reduction Reaction, Ya-Chen Feng, Xiang Wang, Yu-Qi Wang, Hui-Juan Yan, Dong Wang Mar 2022

In Situ Characterization Of Electrode Structure And Catalytic Processes In The Electrocatalytic Oxygen Reduction Reaction, Ya-Chen Feng, Xiang Wang, Yu-Qi Wang, Hui-Juan Yan, Dong Wang

Journal of Electrochemistry

As an electrochemical energy conversion system, fuel cell has the advantages of high energy conversion efficiency and high cleanliness. Oxygen reduction reaction (ORR), as an important cathode reaction in fuel cells, has received extensive attention. At present, the electrocatalysts are still one of the key materials restricting the further commercialization of fuel cells. The fundamental understanding on the catalytic mechanism of ORR is conducive to the development of electrocatalysts with the enhanced activity and high selectivity. This review aims to summarize the in situ characterization techniques used to study ORR. From this perspective, we first briefly introduce the advantages of …


Recent Advances In Structural Regulation On Non-Precious Metal Catalysts For Oxygen Reduction Reaction In Alkaline Electrolytes, Xue Wang, Li Zhang, Chang-Peng Liu, Jun-Jie Ge, Jian-Bing Zhu, Wei Xing Feb 2022

Recent Advances In Structural Regulation On Non-Precious Metal Catalysts For Oxygen Reduction Reaction In Alkaline Electrolytes, Xue Wang, Li Zhang, Chang-Peng Liu, Jun-Jie Ge, Jian-Bing Zhu, Wei Xing

Journal of Electrochemistry

Oxygen reduction reaction (ORR) in alkaline electrolytes is an important electrochemical process for metal-air batteries and anion exchange membrane fuel cells (AEMFCs). However, the sluggish kinetics spurs intensive research on searching robust electrocatalysts. Non-precious metal catalysts (NPMCs) that can circumvent the cost and scarcity issues associated with platinum (Pt)-based materials have been pursued and the challenges lie in the performance improvement to rival Pt-based benchmarks. As the composition and structure of the NPMCs have a significant impact on the catalytic performance, precise regulation on the catalyst structure holds great promise to bridge the activity gap between NPMCs and Pt-based benchmarks. …


Copper Nanoparticles In-Situ Anchored On Nitrogen-Doped Carbon For High-Efficiency Oxygen Reduction Reaction Electrocatalyst, Hui-Fang Yuan, Yue Zhang, Xing-Wu Zhai, Li-Bing Hu, Gui-Xian Ge, Gang Wang, Feng Yu, Bin Dai Dec 2021

Copper Nanoparticles In-Situ Anchored On Nitrogen-Doped Carbon For High-Efficiency Oxygen Reduction Reaction Electrocatalyst, Hui-Fang Yuan, Yue Zhang, Xing-Wu Zhai, Li-Bing Hu, Gui-Xian Ge, Gang Wang, Feng Yu, Bin Dai

Journal of Electrochemistry

Compared with noble metal platinum (Pt)-based catalysts, inexpensive non-noble metal electrocatalysts have attracted extensive attention for oxygen reduction reaction (ORR). Herein, chitosan as a kind of biomass resource rich in nitrogen and carbon was used to prepare nitrogen-doped carbon (N-C) and N-C in-situ anchored by copper nanoparticles (Cu/N-C). The as-obtained N-C and Cu/N-C nanoparticles were successfully used as non-noble eletrocatalysts tested for ORR. Compared with the N-C, the Cu/N-C showed the high surface area of 607.3 m 2·g-1 with the mean pore size of 2.5 nm and the pore volume of 0.40 cm3·g-1. The most positive Gibbs free …


Dft Study Of NiM@Pt1AuN-M-1 (N=19, 38, 55, 79; M = 1, 6, 13, 19) Core-Shell Orr Catalyst, Wen-Jie Li, Dong-Xu Tian, Hong Du, Xi-Qiang Yan Aug 2021

Dft Study Of NiM@Pt1AuN-M-1 (N=19, 38, 55, 79; M = 1, 6, 13, 19) Core-Shell Orr Catalyst, Wen-Jie Li, Dong-Xu Tian, Hong Du, Xi-Qiang Yan

Journal of Electrochemistry

The slow kinetics of oxygen reduction reaction (ORR) limits the performance of low temperature fuel cells. Thus, it needs to design effective catalysts with low cost. Core-shell clusters (CSNCs) show promising activity because of their size-dependent geometric and electronic effects. The ORR activity trend of Nim@Pt1Aun-m-1(n = 19, 38, 55, 79; m = 1, 6, 13, 19) was studied using the GGA-PBE-PAW methods. The adsorption configurations of *O, *OH and *OOH were optimized and the reaction free energies of four proton electron (H+ + e-) transfer steps were calculated. Using …


One-Pot Synthesis Of Fe2O3@Fe-N-C Oxygen Reduction Electrocatalyst And Its Performance For Zinc-Air Battery, Hua Lin, Yi-Jin Wu, Jun-Tao Li, Yao Zhou Aug 2021

One-Pot Synthesis Of Fe2O3@Fe-N-C Oxygen Reduction Electrocatalyst And Its Performance For Zinc-Air Battery, Hua Lin, Yi-Jin Wu, Jun-Tao Li, Yao Zhou

Journal of Electrochemistry

Oxygen reduction reaction (ORR) plays a profound role in determining cathode performance in metal-air batteries and fuel cells. Owing to its inherently sluggish kinetics, high-performance ORR catalysts which favors the scissoring of O-O bond and formation of O-H bond are a requisite. In this regard, Pt has been explored as the most efficient ORR electrocatalysts. Nevertheless, due to its expensiveness, the usage of Pt catalysts represents one of the major sources of cost in those energy conversion devices. Thus, the development of alternative ORR electrocatalysts with minimized Pt utilization has been widely pursued over the past few decades. Metal-nitrogen-carbon catalysts …


Preparation Of Co1-XS-Mns@Cnts/Cnfs For Electrocatalytic Oxygen Reduction Reaction, Fang-Yan Liu, Qian Zhang, Yue-Kun Li, Feng Huang, Meng-Ye Wang Jun 2021

Preparation Of Co1-XS-Mns@Cnts/Cnfs For Electrocatalytic Oxygen Reduction Reaction, Fang-Yan Liu, Qian Zhang, Yue-Kun Li, Feng Huang, Meng-Ye Wang

Journal of Electrochemistry

As an important cathode reaction in fuel cells and metal-air batteries, oxygen reduction reaction (ORR) is a complex reaction of slow kinetics, which severely limits performances of fuel cells and metal-air batteries. Therefore, it is of key importance to find an efficient and stable electrocatalyst to promote ORR. Carbon-based materials, which possess high conductivity, good stability and large specific surface area, are usually used in electrocatalytic ORR. However, pure carbon-based materials exhibit low efficiency. Coupling carbon-based materials with manganese (Mn) and cobalt (Co) transition metals containing 3d orbitals is an effective way to improve electrocatalytic performance. Herein, carbon nanofibers containing …


Pd-Based Electrocatalysts For Oxygen Reduction And Ethanol Oxidation Reactions: Some Recent Insights Into Structures And Mechanisms, Zhi-Peng Wu, Chuan-Jian Zhong Apr 2021

Pd-Based Electrocatalysts For Oxygen Reduction And Ethanol Oxidation Reactions: Some Recent Insights Into Structures And Mechanisms, Zhi-Peng Wu, Chuan-Jian Zhong

Journal of Electrochemistry

The development of efficient electrocatalysts for applications in fuel cells, including proton-exchange membrane fuel cell (PEMFC) and direct ethanol fuel cell (DEFC), has attracted extensive research attention in recent years. Oxygen reduction reaction and ethanol oxidation reaction are two of the key reactions where the design of active, stable and low-cost electrocatalysts is critical for the mass commercializations of PEMFCs and DEFCs. This challenge stems largely from the limited understanding of the catalyst structures and reaction mechanisms. Progress has been made in investigations of electrocatalysts derived from Pd-based alloy nanomaterials both experimentally and computationally. We highlight herein some of the …


Theoretical Studies Of Metal-N-C For Oxygen Reduction And Hydrogen Evolution Reactions In Acid And Alkaline Solutions, Xue-Ping Qin, Shang-Qian Zhu, Lu-Lu Zhang, Shu-Hui Sun, Min-Hua Shao Apr 2021

Theoretical Studies Of Metal-N-C For Oxygen Reduction And Hydrogen Evolution Reactions In Acid And Alkaline Solutions, Xue-Ping Qin, Shang-Qian Zhu, Lu-Lu Zhang, Shu-Hui Sun, Min-Hua Shao

Journal of Electrochemistry

Single atom catalysts (SAC) have been regarded as the promising alternatives to platinum group metals due to their low costs and potentially high catalytic activities in various electrocatalytic reactions. The atomic mechanism understanding of activity discrepancy among different metal and nitrogen co-doped carbon-based catalysts is still lacking. Here, non-precious metal and nitrogen co-doped carbons (Me-N-C, Me = Fe and Co) as the model catalysts are investigated by combining experimental and theoretical studies to explore the catalytic activities and corresponding reaction mechanisms toward oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) at universal pHs. Atomic theoretical simulations suggest that Fe-N-C …


Recent Progress In Bifunctional Catalysts For Zinc-Air Batteries, Neng-Neng Xu, Jin-Li Qiao Aug 2020

Recent Progress In Bifunctional Catalysts For Zinc-Air Batteries, Neng-Neng Xu, Jin-Li Qiao

Journal of Electrochemistry

Zinc-air battery has attracted great attention from researchers due to its high energy density and power density, which is expected to be widely used in energy conversion and storage. Air electrode as the core area of oxygen catalytic reaction is the focus of the entire zinc-air battery research. Recently, many research achievements have been made in non-noble metal bifunctional catalysts/electrodes with high activity, low cost and abundant species. In this review, we mainly focus on the reaction mechanism and the recent progress in non-noble metal oxide catalyst, carbon-based catalyst, and carbon-based transition metal compound composite and self-supporting electrode. In addition, …


Research Progress Of Metal-Nitrogen-Carbon Catalysts Toward Oxygen Reduction Reaction Inm Changchun Institute Of Applied Chemistry, Ming-Jun Xu, Jie Liu, Jun-Jie Ge, Chang-Peng Liu, Wei Xing Aug 2020

Research Progress Of Metal-Nitrogen-Carbon Catalysts Toward Oxygen Reduction Reaction Inm Changchun Institute Of Applied Chemistry, Ming-Jun Xu, Jie Liu, Jun-Jie Ge, Chang-Peng Liu, Wei Xing

Journal of Electrochemistry

The development of highly active and stable catalysts toward oxygen reduction reaction (ORR) has been facing severe challenges. In recent years, pyrolytic M-N-C catalysts and metal-organic framework derived materials made the performance of non-noble metal catalysts greatly improved, however, the molecular and atomic level understanding in the reaction active sites and the mechanism are still lacking. Here, we summarize the recent research progress made in the Changchun Institute of Applied Chemistry. We present a microporous metal-organic-framework confined strategy toward the preferable formation of ORR catalysts. Firstly, we studied the active site and proposed a new active site structure for the …


Nio@Rgo Supported Palladium And Silver Nanoparticles As Electrocatalysts For Oxygen Reduction Reaction, Shuo Yao, Tai-Zhong Huang, Rizwan Haider, Heng-Yi Fang, Jie-Mei Yu, Zhan-Kun Jiang, Dong Liang, Yue Sun, Xian-Xia Yuan Apr 2020

Nio@Rgo Supported Palladium And Silver Nanoparticles As Electrocatalysts For Oxygen Reduction Reaction, Shuo Yao, Tai-Zhong Huang, Rizwan Haider, Heng-Yi Fang, Jie-Mei Yu, Zhan-Kun Jiang, Dong Liang, Yue Sun, Xian-Xia Yuan

Journal of Electrochemistry

For pervasive applications of fuel cells, highly efficient and economical materials are required to replace Pt-based catalysts for oxygen reduction reaction (ORR). In this study, the NiO@rGO, Pd-NiO@rGO and Ag-NiO@rGO nanoparticles were synthesized, and their catalytic performances toward ORR were investigated. The results revealed that all the three materials were capable of catalyzing ORR, but both the Pd-NiO@rGO and Ag-NiO@rGO showed the better performances compared with the NiO@rGO in terms of the reaction pathway being 4-electron process, the increases of the onset potential and the intermediate yielding rate, as well as the extended stability. Moreover, the effect of Pd modification …


Challenges In The Activity And Stability Of Pt-Based Catalysts Toward Orr, Tuo Zhao, Er-Gui Luo, Xian Wang, Jun-Jie Ge, Chang-Peng Liu, Wei Xing Feb 2020

Challenges In The Activity And Stability Of Pt-Based Catalysts Toward Orr, Tuo Zhao, Er-Gui Luo, Xian Wang, Jun-Jie Ge, Chang-Peng Liu, Wei Xing

Journal of Electrochemistry

The development of highly efficient oxygen reduction reaction (ORR) catalysts is the key to the commercialization of fuel cells, where the sluggish ORR reaction rate needs to be overcome by adjusting the intermediates adsorption energies on the catalytic surfaces. To-date, platinum (Pt)-based materials are the-state-of-the-art catalysts in terms of both activity and stability in ORR, making them the preferred choice for commercial applications. However, the high cost of Pt-based catalysts limits their widespread use, leading to massive effects paid in reducing Pt loading, improving catalyst activity and stability. This article illustrates the challenges in the ORR reaction and introduces the …


Effect Of Nitrogen Content In Catalyst Precursor On Activity Of Fen/C Catalyst For Oxygen Reduction Reaction, Zhi Yang, Ya-Yun Shen, E Zhou, Cheng-Ling Wei, Hao-Li Qin, Juan Tian Feb 2020

Effect Of Nitrogen Content In Catalyst Precursor On Activity Of Fen/C Catalyst For Oxygen Reduction Reaction, Zhi Yang, Ya-Yun Shen, E Zhou, Cheng-Ling Wei, Hao-Li Qin, Juan Tian

Journal of Electrochemistry

Non-noble metal catalysts with high activity and low cost have attracted increasing interest as potential catalysts for oxygen reduction reaction (ORR) to replace Pt-based catalysts. In this paper, the effect of nitrogen content in catalyst precursor on ORR activity of FeN/C catalyst was investigated by X-ray diffraction (XRD), Brunauer-Emmet-Teller (BET) surface area and pore size distribution measurements, transmission electron microscope (TEM), thermogravimetric analysis (TGA), and rotating disk electrode (RDE) techniques. The results show that the most active catalyst was obtained by pyrolysis in argon at 1050 °C with a catalyst precursor containing 20wt% 1,10-phenanthroline, 1wt% Fe and Black Pearl 2000. …


Zif-67-Derived Ag/Co-Embedded N-Enriched Mesoporous Carbon For Oxygen Reduction Reaction, Zheng-Ling Di, Jing Zhu, Lei Dai, Wei Meng, Yue-Hua Li, Zhang-Xing He, Ling Wang Dec 2019

Zif-67-Derived Ag/Co-Embedded N-Enriched Mesoporous Carbon For Oxygen Reduction Reaction, Zheng-Ling Di, Jing Zhu, Lei Dai, Wei Meng, Yue-Hua Li, Zhang-Xing He, Ling Wang

Journal of Electrochemistry

Nitrogen-doped porous carbon materials are considered as one of the most promising catalysts for oxygen reduction reaction (ORR). Herein, in order to further improve the activity of the nitrogen-doped porous carbon, Ag/Co bimetal is embedded into nitrogendoped porous carbon to form Ag/Co-embedded nitrogen-doped porous carbon material (AgCo@NC). The AgCo@NC was derived by the wet impregnation of Ag+ into ZIF-67 precursor, followed by chemical reduction and a subsequent pyrolysis process under Ar atmosphere at different temperatures (500 ℃, 600 ℃, 700 ℃). The morphologic characterization shows that the Ag/Co nanoparticles were successfully embedded in the mesoporous carbon framework with abundant nitrogen …


Influences Of Morphology And Nitrogen Doping On The Electrocatalytic Characteristics For Oxygen Reduction Reaction Of Nio/Rgo, Dong Liang, Heng-Yi Fang, Shuo Yao, Jie-Mei Yu, Zhao-Liang Zhang, Zhan-Kun Jiang, Xue-Ping Gao, Tai-Zhong Huang Oct 2019

Influences Of Morphology And Nitrogen Doping On The Electrocatalytic Characteristics For Oxygen Reduction Reaction Of Nio/Rgo, Dong Liang, Heng-Yi Fang, Shuo Yao, Jie-Mei Yu, Zhao-Liang Zhang, Zhan-Kun Jiang, Xue-Ping Gao, Tai-Zhong Huang

Journal of Electrochemistry

In this research, the reduced graphene oxide (rGO) supported sheet-like NiO (NiO/rGO) and spherical-like NiO (NiO/N-rGO) catalysts for oxygen reduction reaction (ORR) were prepared. The structures, morphologies and chemical states of the two catalysts were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical catalytic performance of the two catalysts for ORR were investigated by cyclic voltammetry (CV), Tafel, linear sweeping voltammetry (LSV), rotating disc electrode (RDE) and rotating ring disc electrode (RRDE) tests. Electrochemical results showed that the current density and onset potential (about 0.89 V) …


Preparations And Electrocatalytic Properties Of Cu-Bipy-Btc-Derived Carbon-Based Catalyst For Oxygen Reduction Reaction, Li-Hua Zhang, Jun-Feng Chen, Wan-Tang Huang, Yong-You Hu, Jian-Hua Cheng, Yuan-Cai Chen Aug 2019

Preparations And Electrocatalytic Properties Of Cu-Bipy-Btc-Derived Carbon-Based Catalyst For Oxygen Reduction Reaction, Li-Hua Zhang, Jun-Feng Chen, Wan-Tang Huang, Yong-You Hu, Jian-Hua Cheng, Yuan-Cai Chen

Journal of Electrochemistry

Efficient and low-cost oxygen reduction reaction (ORR) electrocatalyst plays a key role for fuel cells. In this paper, ORR active metal organic framework (MOF: Cu-bipy-BTC, bipy = 2,2?-bipyridine, BTC = 1,3,5-tricarboxylate) was prepared using hydrothermal method, and then carbon-based material MOF-800 was obtained from pyrolyzing Cu-bipy-BTC at 800 °C. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), nitrogen sorption isotherm and X-ray photolectron spectroscopy (XPS) were used to characterize the morphologies and structures of the catalysts. Linear sweep voltammetry (LSV) and current-time curve (i-t) were adopted to evaluate the electrocatalytic properties of the catalysts. …


Preparation And Electrocatalytic Oxygen Reduction Performance Of Self-Doped Sludge-Derived Carbon, Ya-Li Ye, Wei-Ming Feng, Ge Li, Zhen-Chao Lei, Chun-Hua Feng Apr 2019

Preparation And Electrocatalytic Oxygen Reduction Performance Of Self-Doped Sludge-Derived Carbon, Ya-Li Ye, Wei-Ming Feng, Ge Li, Zhen-Chao Lei, Chun-Hua Feng

Journal of Electrochemistry

The development of low-cost, high-performance cathode catalysts is critical for practical application of fuel cells. Here, the N, P-doped porous graphene-like carbon with outstanding oxygen reduction reaction (ORR) performance was synthesized by pyrolysis of surplus sludge, which functioned as a self-doped, self-activated, and self-templated precursor by acclimation with continuous feedings of phenol. The results show that the amounts of microorganisms were enriched after acclimation, with increasing contents of N, P, Fe, as well as C atoms. The increasing pyrolysis temperature resulted in the formation of an ordered graphitic structure, however, the excessively high temperature induced the drop in the amounts …


Fe-N Doped Hollow Carbon Nanospheres Linked By Carbon Nanotubes For Oxygen Reduction Reaction, Ya-Lin Zhang, Chi Chen, Liang-Liang Zou, Zhi-Qing Zou, Hui Yang Dec 2018

Fe-N Doped Hollow Carbon Nanospheres Linked By Carbon Nanotubes For Oxygen Reduction Reaction, Ya-Lin Zhang, Chi Chen, Liang-Liang Zou, Zhi-Qing Zou, Hui Yang

Journal of Electrochemistry

The development of non-precious metal catalysts for oxygen reduction reaction (ORR) is essential for large-scale application of proton exchange membrane fuel cells. Herein, we present the in situ formed Fe-N doped hollow carbon nanospheres linked by carbon nanotubes composite, synthesized by using ZIF-8 as sacrificed template to form polydopamine (PDA) hollow nanospheres, followed by complexing with FeCl3, high temperature heat-treatment and NH3-etching. ZIF-8 was gradually decomposed simultaneously with PDA coating due to the loss of Zn2+ grabbed by PDA. NH3 etching resulted in the improved surface area, while the reducibility of NH3 resulted in …


Recent Progress In Pt-Based Catalysts For Oxygen Reduction Reaction, Jing Li, Xin Feng, Zi-Dong Wei Dec 2018

Recent Progress In Pt-Based Catalysts For Oxygen Reduction Reaction, Jing Li, Xin Feng, Zi-Dong Wei

Journal of Electrochemistry

One major challenge for a large-scale commercialization of the proton-exchange membrane fuel cells (PEMFCs) technologies that enable a shift to ‘zero-emission’ personal transportation, is the expensive and unstable Pt catalysts, which are mainly used to catalyze the sluggish kinetics of the oxygen reduction reaction (ORR) occurred on the air electrode of PEMFCs. Many research works have targets to improve the stability of Pt-based catalysts and to construct Pt/transitional metal alloys with low Pt loading amount. Herein, we provide a minireview for the Pt-based ORR catalysts based on our recent work, which covers a brief background introduction, the stability improvement of …


Caging Porous Co-N-C Nanocomposites In 3d Graphene As Active And Aggregation-Resistant Electrocatalyst For Oxygen Reduction Reaction, Lu-Yang Xiu, Meng-Zhou Yu, Peng-Ju Yang, Zhi-Yu Wang, Jie-Shan Qiu Dec 2018

Caging Porous Co-N-C Nanocomposites In 3d Graphene As Active And Aggregation-Resistant Electrocatalyst For Oxygen Reduction Reaction, Lu-Yang Xiu, Meng-Zhou Yu, Peng-Ju Yang, Zhi-Yu Wang, Jie-Shan Qiu

Journal of Electrochemistry

Oxygen reduction reaction (ORR) is the cornerstone reaction of many renewable energy technologies such as fuel cells and rechargeable metal-air batteries. The Pt-based electrocatalysts exhibit the highest activity toward ORR, but their large implementation is greatly prohibiting by unaffordable cost and inferior durability. During electrode manufacturing and electrochemical reaction, severe aggregation of catalyst nanoparticles induced by size effect further limits the operational performance of electrocatalysts. We report a new strategy for fabrication of active and aggregation-resistant ORR electrocatalyst by caging metal-organic frameworks derived Co-N-C nanocomposites in permeable and porous 3D graphene cages via sprayed drying the mixed colloids of ZIF-67 …


Facile Synthesis Of Pt-Cu Alloy Nanodendrites As High-Performance Electrocatalysts For Oxygen Reduction Reaction, Liu-Xuan Luo, Guang-Hua Wei, Shui-Yun Shen, Feng-Juan Zhu, Chang-Chun Ke, Xiao-Hui Yan, Jun-Liang Zhang Dec 2018

Facile Synthesis Of Pt-Cu Alloy Nanodendrites As High-Performance Electrocatalysts For Oxygen Reduction Reaction, Liu-Xuan Luo, Guang-Hua Wei, Shui-Yun Shen, Feng-Juan Zhu, Chang-Chun Ke, Xiao-Hui Yan, Jun-Liang Zhang

Journal of Electrochemistry

Structures and compositions have significant effects on the catalytic properties of nanomaterials. Herein, a facile etching-based method was employed to synthesize Pt-Cu nanodendrites (NDs) with uniform and homogeneous alloy structures for enhancing oxygen reduction reaction (ORR). The formation of dendritic morphology was ascribed to the etching effect caused by the oxidative etchants of the Br-/O2 pair. The atomic ratio of Pt/Cu in Pt-Cu NDs could be easily tuned by altering the ratio of the Pt/Cu precursors, without deteriorating the dendritic morphology. The most active carbon-supported Pt1Cu1 NDs (Pt1Cu1 NDs/C) exhibited the …


Recent Process In Transition-Metal-Oxide Based Catalysts For Oxygen Reduction Reaction, Yao Wang, Zi-Dong Wei Oct 2018

Recent Process In Transition-Metal-Oxide Based Catalysts For Oxygen Reduction Reaction, Yao Wang, Zi-Dong Wei

Journal of Electrochemistry

Transition metal oxides (TMOs) based catalysts have become the most promising catalysts to be employed in anion exchange membrane fuel cell for the sluggish oxygen reduction reaction (ORR). However, their ORR activity is still far from that of the Pt-based catalysts. Therefore, it is important to develop high performance TMO based catalysts. Electrical conductivity and intrinsic activity have been regarded as the two keys to affect the ORR activity of the TMOs based catalysts. In this review, we focused on the recent progresses in the fundamental viewpoints on the electrical conductivity and intrinsic activity of the TMOs based ORR catalysts. …


Recent Progress For Fe-N-C Electrocatalysts In Alkaline Fuel Cells, Xin Deng, Heng-Quan Chen, Ye Hu, Qing-Gang He Jun 2018

Recent Progress For Fe-N-C Electrocatalysts In Alkaline Fuel Cells, Xin Deng, Heng-Quan Chen, Ye Hu, Qing-Gang He

Journal of Electrochemistry

Fuel cells are highly recommended nowadays due to their intrinsic advantages such as high energy conversion efficiency, nearly no pollution, and convenient operation. With the development of anion exchange membrane, alkaline fuel cells have gone through a renaissance thanks to their superiorities such as faster reaction kinetics, wider choices for both fuels and electrocatalysts. It is essential to find an appropriate electrocatalyst for oxygen reduction reaction (ORR) to improve the performance of alkaline fuel cells. Further commercialization of the widely used Pt-based materials has suffered from disadvantages such as scarcity and high cost. As alternatives to largely investigated Pt-based materials, …


Core-Shell Pd@Pt Ultrathin Nanowires As Durable Oxygen Reduction Electrocatalysts, Xin Wang, Yun-Jie Xiong, Liang-Liang Zou, Qing-Hong Huang, Zhi-Qing Zou, Hui Yang Dec 2017

Core-Shell Pd@Pt Ultrathin Nanowires As Durable Oxygen Reduction Electrocatalysts, Xin Wang, Yun-Jie Xiong, Liang-Liang Zou, Qing-Hong Huang, Zhi-Qing Zou, Hui Yang

Journal of Electrochemistry

This paper describes a simple CO-assisted reduction approach for the controllable synthesis of ultrathin Pd nanowires along the one-dimensional (1D) direction. Ultrathin Pt films from one to several atomic layers were successfully decorated onto ultrathin Pd nanowires by utilizing Cu UPD deposition, and followed by in-situ redox replacement reaction of UPD Cu by Pt. The core–shell structure and composition of the Pd@Pt ultrathin nanowires have been verified using transmission electron microscopy and energy dispersive X-ray spectrometry. The core–shell Pd@Pt ultrathin nanowires exhibited comparative electrocatalytic activity and improved durability for the oxygen reduction reaction in comparison with commercial Pt black. The …


Thermo-Stability And Active Site Structure Of Fe/N/C Electrocatalyst For Oxygen Reduction Reaction, Chi Chen, Yu-Jiao Lai, Zhi-You Zhou, Xin-Sheng Zhang, Shi-Gang Sun Aug 2017

Thermo-Stability And Active Site Structure Of Fe/N/C Electrocatalyst For Oxygen Reduction Reaction, Chi Chen, Yu-Jiao Lai, Zhi-You Zhou, Xin-Sheng Zhang, Shi-Gang Sun

Journal of Electrochemistry

The development of Fe/N/C electrocatalyst for oxygen reduction reaction (ORR) is vital for the large-scale applications of proton exchange membrane fuel cells. Understanding the active site structure will contribute to the rational design of highly active catalysts. In this study, the as-prepared Fe/N/C catalyst based on poly-m-phenylenediamine (PmPDA-FeNx/C) catalyst with the high ORR activity was subjected to the high-temperature heat treatment again at 1000 ~1500 oC. The degradation of in the ORR activity of PmPDA-FeNx/C by with various heat treatments was correlated to the change of elemental compositions, chemical states and textural properties. As the …


Impact Of Nafion Loading And Anion Adsorption On The Synthesis Of Pt Monolayer Core-Shell Catalysts, Lijun Yang, Dustin Banham, Elod Gyenge, Siyu Ye Apr 2017

Impact Of Nafion Loading And Anion Adsorption On The Synthesis Of Pt Monolayer Core-Shell Catalysts, Lijun Yang, Dustin Banham, Elod Gyenge, Siyu Ye

Journal of Electrochemistry

Carbon supported palladium (Pd) nanoparticles were used as a model core material for the synthesis of platinum (Pt) monolayer core-shell catalysts using rotating disk electrode method and a copper (Cu) under potential deposition technique. The impact of Nafion on the synthesis process was revealed by electrochemical testing with various Nafion contents. The existence of Nafion influenced the Cu under potential deposition, galvanic replacement and eventually the oxygen reduction reaction activity of the core-shell catalyst. However, as long as the Nafion content was less than 5 wt% in the test film, adding Nafion could help to bind catalyst onto the surface …


Comparison Of Oxygen Reduction Reaction Activity Of Pt-Alloy Nanocubes, Yongan Tang, Lin Dai, Shouzhong Zou Apr 2017

Comparison Of Oxygen Reduction Reaction Activity Of Pt-Alloy Nanocubes, Yongan Tang, Lin Dai, Shouzhong Zou

Journal of Electrochemistry

Alloying Pt with the first row non-noble transition metals has been demonstrated to increase the catalytic activity toward oxygen reduction reaction (ORR), which is the cathode reaction of the proton exchange membrane fuel cells (PEMFCs) and metal-air batteries. However, how much the ORR activity improvement comes from the alloying elements remains controversial. In this paper, the nanocubes of PtMn, PtFe, PtCo, and PtNi with the similar size and composition were prepared and their ORR activities were explored, in order to investigate the effects of alloying elements on the catalytic activity. The use of cubic shape particles minimizes the contribution to …