Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Electrical and Computer Engineering

Electrochemical Behavior Of Dense Electrodes For Impedancemetric Nox Sensors, Nabamita Pal Jul 2017

Electrochemical Behavior Of Dense Electrodes For Impedancemetric Nox Sensors, Nabamita Pal

Doctoral Dissertations

NOx (NO and NO2) exhaust gas sensors for diesel powered vehicles have traditionally consisted of porous platinum (Pt) electrodes along with a dense ZrO2 based electrolyte. Advancement in diesel engine technology results in lower NOx emissions. Although Pt is chemically and mechanically tolerant to the extreme exhaust gas environment, it is also a strong catalyst for oxygen reduction, which can interfere with the detection of NOx at concentrations below 100 ppm. Countering this behavior can add to the complexity and cost of the conventional NO x sensor design. Recent studies have shown that dense electrodes are less prone to heterogeneous …


Diamond Mems Biosensors: Development And Applications, Wenli Zhang Jul 2015

Diamond Mems Biosensors: Development And Applications, Wenli Zhang

Doctoral Dissertations

This research focuses on the development a dielectrophoresis-enhanced microfluidic impedance biosensor (DEP-e-MIB) to enable fast response, real-time, label-free, and highly sensitive sensor for bacterial detection in clinical sample. The proposed design consists of application of dielectrophoresis (DEP) across a microfluidic channel to one of the impedance spectroscopy electrodes in order to improve the existent bacterial detection limits with impedance spectroscopy. In order to realize such a design, choice of electrode material with a wide electrochemical potential window for water is very important. Conventional electrode material, such as gold, are typically insulated for the application of DEP, and they fail when …


Study Of Interaction Between Indium Species And Dna In The Formation Of Dna -Templated Nanowires, Shivashankar Suryanarayanan Oct 2007

Study Of Interaction Between Indium Species And Dna In The Formation Of Dna -Templated Nanowires, Shivashankar Suryanarayanan

Doctoral Dissertations

A primary goal of semiconductor industry is to improve device performance and capability by downscaling feature size and upscaling packaging density. As optical-lithography, the mainstream technology for microfabrication, is being stretched to its limit, new unconventional fabrication techniques are being explored as alternatives. A "Bottom-up" approach for manufacturing is emerging as an answer to limitations posed by the traditional "Top-down" approach. Nanowires, bearing the potential of being the basic building blocks for such an approach, are gaining tremendous attention in nanoelectronics. Metal nanowires fabricated using DNA as templates have potential for precise control of length, diameter and positioning. However, wires …


Design And Development Of Microcantilever As A Platform For Moisture Sensing, Qi Chen Oct 2007

Design And Development Of Microcantilever As A Platform For Moisture Sensing, Qi Chen

Doctoral Dissertations

Ultra-sensitive and selective moisture sensors are needed in various industries for processing control or environmental monitoring. As an outstanding sensor platform, microcantilevers have potential application in moisture detection due to their advantages, such as low-level moisture detection limits, high accuracy, quick response time, high reproducibility, good recovery rate and low in cost. Our research results will lead to the first of its kind for the commercialization of a microcantilever-based moisture sensor used for industrial and household applications. The novelty of the present work is the development of SiO2 and Si cantilevers, which were fabricated using developed processes and modified with …


Layer-By-Layer Nanoassembly Combined With Microfabrication Techniques For Microelectronics And Microelectromechanical Systems, Jingshi Shi Oct 2004

Layer-By-Layer Nanoassembly Combined With Microfabrication Techniques For Microelectronics And Microelectromechanical Systems, Jingshi Shi

Doctoral Dissertations

The objective of this work is to investigate the combination of layer-by-layer self-assembly with microfabrication technology and its applications in microelectronics and MEMS.

One can assemble, on a standard silicon wafer, needed multilayers containing different nanoparticles and polymers and then apply various micromanufacturing techniques to form microdevices with nanostructured elements.

Alternate layer-by-layer self-assembly of linear polyions and colloidal silica at elevated temperatures have been firstly studied by QCM and SEM. LbL self-assembly and photolithography were combined to fabricate an indium resistor. The RTA method was employed in the fabrication. Hot-embossing technique as a reasonably fast and moderately expensive technique was …