Open Access. Powered by Scholars. Published by Universities.®

Robotics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Robotics

Robostock: Autonomous Inventory Tracking, Drew Christian Balthazor Dec 2016

Robostock: Autonomous Inventory Tracking, Drew Christian Balthazor

Computer Engineering

No abstract provided.


Mesh Addition Based On The Depth Image (Mabdi), Lucas E. Chavez Nov 2016

Mesh Addition Based On The Depth Image (Mabdi), Lucas E. Chavez

Mechanical Engineering ETDs

Many robotic applications utilize a detailed map of the world and the algorithm used to produce such a map must take into consideration real-world constraints such as computational and memory costs. Traditional mesh-based environmental mapping algorithms receive data from the sensor, create a mesh surface from the data, and then append the surface to a growing global mesh. These algorithms do not provide a computationally efficient mechanism for reducing redundancies in the global mesh. MABDI is able to leverage the knowledge contained in the global mesh to find the difference between what we expect our sensor to see and what …


Formal Performance Guarantees For Behavior-Based Localization Missions, Damian Lyons, Ron Arkin, Shu Jiang, Matt O'Brien, Feng Tang, Peng Tang Nov 2016

Formal Performance Guarantees For Behavior-Based Localization Missions, Damian Lyons, Ron Arkin, Shu Jiang, Matt O'Brien, Feng Tang, Peng Tang

Faculty Publications

Abstract— Localization and mapping algorithms can allow a robot to navigate well in an unknown environment. However, whether such algorithms enhance any specific robot mission is currently a matter for empirical validation. In this paper we apply our MissionLab/VIPARS mission design and verification approach to an autonomous robot mission that uses probabilistic localization software.

Two approaches to modeling probabilistic localization for verification are presented: a high-level approach, and a sample-based approach which allows run-time code to be embedded in verification. Verification and experimental validation results are presented for two different missions, each using each method, demonstrating the accuracy …


Autonomous Android: Autonomous 3d Environment Mapping With Android Controlled Multicopters, Tate Glick Hawkersmith Aug 2016

Autonomous Android: Autonomous 3d Environment Mapping With Android Controlled Multicopters, Tate Glick Hawkersmith

Masters Theses

Autonomous robots are robotic platforms with a high degree of autonomy, programmed to perform various behaviors or tasks. They can either be semi-autonomous, only operable within the strict confines of their direct environment, or fully autonomous, capable of sensing and navigating their environments without any human interaction.

In this thesis, I focus on fully autonomous robotic platforms, specifically multicopters, controlled by an onboard Android-driven device, a widely available operating system for smartphones and tablets with over 1.4 billion active monthly users worldwide [Callaham 2015]. The main objective of this research is to create a plug and play solution for autonomous …


Pythagorean Combinations For Lego Robot Building., Ronald I. Greenberg Jul 2016

Pythagorean Combinations For Lego Robot Building., Ronald I. Greenberg

Computer Science: Faculty Publications and Other Works

This paper provides tips for LEGO robot construction involving bracing or gear meshing along a diagonal using standard Botball kits.


A Cyber-Physical System, Andrew Davis, Dustin Bowe, Josiah Nagel May 2016

A Cyber-Physical System, Andrew Davis, Dustin Bowe, Josiah Nagel

Montview Journal of Research & Scholarship

The team was tasked with the creation of an autonomous cyber-physical system that could be continually developed as a post-capstone class by future STEM students and as a means to teach future engineering students. The strict definition of a cyber-physical system is a computation machine that networks with an embedded computer that performs a physical function. The autonomous aspect was achieved through two sonic sensors to monitor object distances in order to avoid walls and obstacles. The integrated system was based on the Intel Edison computation module. A primary goal for future addition is automation capabilities and machine learning applications.


Robot Detection Using Gradient And Color Signatures, Megan Marie Maher May 2016

Robot Detection Using Gradient And Color Signatures, Megan Marie Maher

Honors Projects

Tasks which are simple for a human can be some of the most challenging for a robot. Finding and classifying objects in an image is a complex computer vision problem that computer scientists are constantly working to solve. In the context of the RoboCup Standard Platform League (SPL) Competition, in which humanoid robots are programmed to autonomously play soccer, identifying other robots on the field is an example of this difficult computer vision problem. Without obstacle detection in RoboCup, the robotic soccer players are unable to smoothly move around the field and can be penalized for walking into another robot. …


The Role Of Uncertainty In Categorical Perception Utilizing Statistical Learning In Robots, Nathaniel V. Powell Jan 2016

The Role Of Uncertainty In Categorical Perception Utilizing Statistical Learning In Robots, Nathaniel V. Powell

Graduate College Dissertations and Theses

At the heart of statistical learning lies the concept of uncertainty.

Similarly, embodied agents such as robots

and animals must likewise address uncertainty, as sensation

is always only a partial reflection of reality. This

thesis addresses the role that uncertainty can play in

a central building block of intelligence: categorization.

Cognitive agents are able to perform tasks like categorical perception

through physical interaction (active categorical perception; ACP),

or passively at a distance (distal categorical perception; DCP).

It is possible that the former scaffolds the learning of

the latter. However, it is unclear whether DCP indeed scaffolds

ACP in humans and …


Design And Development Of The Ebear: A Socially Assistive Robot For Elderly People With Depression, Amirhossein Kargarbideh Jan 2016

Design And Development Of The Ebear: A Socially Assistive Robot For Elderly People With Depression, Amirhossein Kargarbideh

Electronic Theses and Dissertations

There has been tremendous progress in the field of robotics in the past decade and especially developing humanoid robots with social abilities that can assist human at a socio-emotional level. The objective of this thesis is to develop and study a perceptive and expressive animal-like robot equipped with artificial intelligence in assisting the elderly people with depression. We investigated how social robots can become companions of elderly individuals with depression and improve their mood and increase their happiness and well-being. The robotic platform built in this thesis is a bear-like robot called the eBear. The eBear can show facial expression …


Establishing Performance Guarantees For Behavior-Based Robot Missions Using An Smt Solver, Feng Tang, Damian M. Lyons, Ronald Arkin Jan 2016

Establishing Performance Guarantees For Behavior-Based Robot Missions Using An Smt Solver, Feng Tang, Damian M. Lyons, Ronald Arkin

Faculty Publications

In prior work we developed an approach to formally representing behavior-based multi-robot programs, and the uncertain environments in which they operate, as process networks. We automatically extract a set of probabilistic equations governing program execution in that environment using a static analysis module called VIPARS, and solve these using a Dynamic Bayesian Network (DBN) to establish whether stated performance guarantees hold for the program in that environment. In this paper we address the challenge of expanding the range of performance guarantees that are possible by using an SMT-solver instead of a DBN. We translate flow functions, which are recursive probabilistic …


Teaching Robot Kinematics For Engineering Technology Students Using A Created Three-Dimensional Robot And Camera, Cheng Y. Lin, Yuzhong Shen Jan 2016

Teaching Robot Kinematics For Engineering Technology Students Using A Created Three-Dimensional Robot And Camera, Cheng Y. Lin, Yuzhong Shen

Engineering Technology Faculty Publications

Teaching robot kinematics is important to engineering technology students in the robot automation. The study can help students not only in the coordinate transformation principles from a joint to its following joint in a robot, but also in relating the coordinate systems between a robot and a machine vision system. While students can utilize math software to compute robot kinematic transformations, they have problems verifying their answers. In this paper, a three dimensional vertically articulated robot is created to help students visualize the location and orientation of the end effector. Students can check their robot kinematic answers based on the …


Follow Me Robot, Victoria M. Edwards Jan 2016

Follow Me Robot, Victoria M. Edwards

Honors Theses

The idea of a personal robotic assistant, while once made up the tales of science fiction, is now moving closer and closer to reality. It is easy for two humans to walk together where one person knows the directions and the other person follows along. However, it is not a trivial problem for a robot to recognize a human, and follow side by side along with them. There are three key parts to this problem: 1.) Detection of a human, 2.) Tracking the human, and 3.) the robot's Motion strategy. Using baseline assumptions, I can simplify the detection process allowing …