Open Access. Powered by Scholars. Published by Universities.®

Robotics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Robotics

Control System For 3d Printable Robotic Hand, Htoo Wai Htet Jun 2016

Control System For 3d Printable Robotic Hand, Htoo Wai Htet

Honors Theses

Humanoid robotics is a growing area of research due to its potential applications in orthosis and prosthesis for human beings. With the currently available technologies, the most advanced robotic hands used in prosthetics or robotics can cost from $11,000 to $90,000, making it inaccessible to the general population of amputees and robotics hobbyists. Most of the features provided by these expensive technologies are superfluous to many users, creating a great gap in cost and services between users and technology. Using the emerging 3D printing technology, my project is to construct a 3D printed robotic hand that can reproduce as many …


Evolving Soft Robots With Vibration Based Movement, Andrew Danise Jun 2014

Evolving Soft Robots With Vibration Based Movement, Andrew Danise

Honors Theses

Creating effective designs for soft robots is extremely difficult due to the large number of different possibilities for shape, material properties, and movement mechanisms. Due to the lack of methods to design soft robots, previous research has used evolutionary algorithms to tackle this problem of overwhelming options. A popular technique is to use generative encodings to create designs using evolutionary algorithms because of their modularity and ability to induce large scale coordinated change. The main drawback of generative encodings is that it is difficult to know where along the ontogenic trajectory resides the phenotype with the highest fitness. The two …


The Design Of A Maneuverable Rolling Robot, David Carabis Jun 2013

The Design Of A Maneuverable Rolling Robot, David Carabis

Honors Theses

The purpose of this project was to design, fabricate, and test a maneuverable rolling robot. Although some other rolling robots were researched for this project, a novel approach was taken to design a unique, cheap robot that could turn and was fully enclosed by a rotating outer shell. The design and research phase of this project included the evaluation of several designs, the development of a mathematical model detailing forward motion of the robot, and the derivation of several design equations. Of the possible designs, an interior counterweight was chosen to provide a torque to the outside shell and move …