Open Access. Powered by Scholars. Published by Universities.®

Robotics Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

2022

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 28 of 28

Full-Text Articles in Robotics

Modeling, Control And Estimation Of Reconfigurable Cable Driven Parallel Robots, Adhiti Raman Thothathri Dec 2022

Modeling, Control And Estimation Of Reconfigurable Cable Driven Parallel Robots, Adhiti Raman Thothathri

All Dissertations

The motivation for this thesis was to develop a cable-driven parallel robot (CDPR) as part of a two-part robotic device for concrete 3D printing. This research addresses specific research questions in this domain, chiefly, to present advantages offered by the addition of kinematic redundancies to CDPRs. Due to the natural actuation redundancy present in a fully constrained CDPR, the addition of internal mobility offers complex challenges in modeling and control that are not often encountered in literature.

This work presents a systematic analysis of modeling such kinematic redundancies through the application of reciprocal screw theory (RST) and Lie algebra while …


Material Characterization And Comparison Of Sol-Gel Deposited And Rf Magnetron Deposited Lead Zirconate Titanate Thin Films, Katherine Lynne Miles Nov 2022

Material Characterization And Comparison Of Sol-Gel Deposited And Rf Magnetron Deposited Lead Zirconate Titanate Thin Films, Katherine Lynne Miles

Mechanical Engineering ETDs

Lead zirconate titanate (PZT) has been a material of interest for sensor, actuator, and transducer applications in microelectromechanical systems (MEMS). This is due to their favorable piezoelectric, pyroelectric and ferroelectric properties. While various methods are available to deposit PZT thin films, radio frequency (RF) magnetron sputtering was selected to provide high quality PZT films with the added capability of batch processing. These sputter deposited PZT films were characterized to determine their internal film stress, Young’s modulus, composition, and structure. After characterization, the sputtered PZT samples were poled using corona poling and direct poling methods. As a means of comparison, commercially …


Multi-Robot Symbolic Task And Motion Planning Leveraging Human Trust Models: Theory And Applications, Huanfei Zheng Nov 2022

Multi-Robot Symbolic Task And Motion Planning Leveraging Human Trust Models: Theory And Applications, Huanfei Zheng

All Dissertations

Multi-robot systems (MRS) can accomplish more complex tasks with two or more robots and have produced a broad set of applications. The presence of a human operator in an MRS can guarantee the safety of the task performing, but the human operators can be subject to heavier stress and cognitive workload in collaboration with the MRS than the single robot. It is significant for the MRS to have the provable correct task and motion planning solution for a complex task. That can reduce the human workload during supervising the task and improve the reliability of human-MRS collaboration. This dissertation relies …


Event-Triggered Optimal Adaptive Control Of Partially Unknown Linear Continuous-Time Systems With State Delay, Rohollah Moghadam, Vignesh Narayanan, Sarangapani Jagannathan Nov 2022

Event-Triggered Optimal Adaptive Control Of Partially Unknown Linear Continuous-Time Systems With State Delay, Rohollah Moghadam, Vignesh Narayanan, Sarangapani Jagannathan

Publications

This paper proposes an event-triggered optimal adaptive output feedback control design approach by utilizing integral reinforcement learning (IRL) for linear time-invariant systems with state delay and uncertain internal dynamics. In the proposed approach, the general optimal control problem is formulated into the game-theoretic framework by treating the event-triggering threshold and the optimal control policy as players. A cost function is defined and a value functional, which includes the delayed system output, is considered. First, by using the value functional and applying stationarity conditions using the Hamiltonian function, the output game delay algebraic Riccati equation (OGDARE) and optimal control policy are …


Device Free Indoor Localization Of Human Target Using Wifi Fingerprinting, Prasanga Neupane Oct 2022

Device Free Indoor Localization Of Human Target Using Wifi Fingerprinting, Prasanga Neupane

LSU Master's Theses

Indoor localization of human objects has many important applications nowadays. Proposed here is a new device free approach where all the transceiver devices are fixed in an indoor environment so that the human target doesn't need to carry any transceiver device with them. This work proposes radio-frequency fingerprinting for the localization of human targets which makes this even more convenient as radio-frequency wireless signals can be easily acquired using an existing wireless network in an indoor environment. This work explores different avenues for optimal and effective placement of transmitter devices for better localization. In this work, an experimental environment is …


Collaborative Robotics Strategies For Handling Non-Repetitive Micro-Drilling Tasks Characterized By Low Structural Mechanical Impedance, Xiangyu Wang Aug 2022

Collaborative Robotics Strategies For Handling Non-Repetitive Micro-Drilling Tasks Characterized By Low Structural Mechanical Impedance, Xiangyu Wang

Mechanical & Aerospace Engineering Theses & Dissertations

Mechanical micro-drilling finds widespread use in diverse applications ranging from advanced manufacturing to medical surgery. This dissertation aims to develop techniques that allow programming of robots to perform effective micro-drilling tasks. Accomplishing this goal is faced with several challenges. Micro-drills suffer from frequent breakage caused from variations in drill process parameters. Micro-drilling tasks afford extremely low feed rates and almost zero tolerance for any feed rate variations. The accompanying robot programming task is made difficult as mathematical models that capture the micro-drilling process complexities and sensitive variations in micro-drill parameters are highly difficult to obtain. Therefore, an experimental approach is …


Integrating Plcs With Robot Motion Control In Engineering Capstone Courses, Sanjeevi Chitikeshi, Shirshak K. Dhali, Vukica Jovanovic Aug 2022

Integrating Plcs With Robot Motion Control In Engineering Capstone Courses, Sanjeevi Chitikeshi, Shirshak K. Dhali, Vukica Jovanovic

Engineering Technology Faculty Publications

Robotic motion control methods and Programmable Logic Controllers (PLCs) are critical in engineering automation and process control applications. In most manufacturing and automation processes, robots are used for moving parts and are controlled by industrial PLCs. Proper integration of external I/O devices, sensors and actuating motors with PLC input and output cards is very important to run the process smoothly without any faults and/or safety concerns. Most traditional electrical and computer engineering (ECE) programs offer high level of motion theory and controls but little hands-on exposure to PLCs which are the main industrial controllers. This paper provides a framework for …


Reduced Fuel Emissions Through Connected Vehicles And Truck Platooning, Paul D. Brummitt Aug 2022

Reduced Fuel Emissions Through Connected Vehicles And Truck Platooning, Paul D. Brummitt

Electronic Theses and Dissertations

Vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication enable the sharing, in real time, of vehicular locations and speeds with other vehicles, traffic signals, and traffic control centers. This shared information can help traffic to better traverse intersections, road segments, and congested neighborhoods, thereby reducing travel times, increasing driver safety, generating data for traffic planning, and reducing vehicular pollution. This study, which focuses on vehicular pollution, used an analysis of data from NREL, BTS, and the EPA to determine that the widespread use of V2V-based truck platooning—the convoying of trucks in close proximity to one another so as to reduce air drag …


Credit Card Fraud Detection Using Machine Learning Techniques, Nermin Samy Elhusseny, Shimaa Mohamed Ouf, Amira M. Idrees Ami Jul 2022

Credit Card Fraud Detection Using Machine Learning Techniques, Nermin Samy Elhusseny, Shimaa Mohamed Ouf, Amira M. Idrees Ami

Future Computing and Informatics Journal

This is a systematic literature review to reflect the previous studies that dealt with credit card fraud detection and highlight the different machine learning techniques to deal with this problem. Credit cards are now widely utilized daily. The globe has just begun to shift toward financial inclusion, with marginalized people being introduced to the financial sector. As a result of the high volume of e-commerce, there has been a significant increase in credit card fraud. One of the most important parts of today's banking sector is fraud detection. Fraud is one of the most serious concerns in terms of monetary …


Dual-Axis Precision Imager, Gary Huarng Jun 2022

Dual-Axis Precision Imager, Gary Huarng

Computer Engineering

The Dual-Axis Precision Imager (DAPI) is a drawing robot that processes images and draws them on a whiteboard. The system has two modes: a Sobel filter mode that finds the edges of the input image with a Sobel filter, and a tri-tone grayscale mode that approximates the shading of the input image with the colors white, gray, and black. The DAPI consists of an Arduino-controlled XY gantry system with a pen mounted on the gantry head, and a Processing IDE program that processes the original image, converts the processed image into gantry instructions, and sends them to the Arduino for …


Developing A Miniature Smart Boat For Marine Research, Michael Isaac Eirinberg Jun 2022

Developing A Miniature Smart Boat For Marine Research, Michael Isaac Eirinberg

Computer Engineering

This project examines the development of a smart boat which could serve as a possible marine research apparatus. The smart boat consists of a miniature vessel containing a low-cost microcontroller to live stream a camera feed, GPS telemetry, and compass data through its own WiFi access point. The smart boat also has the potential for autonomous navigation. My project captivated the interest of several members of California Polytechnic State University, San Luis Obispo’s (Cal Poly SLO) Marine Science Department faculty, who proposed a variety of fascinating and valuable smart boat applications.


Smartphone Control Of Rc Cars, Weston R. Fitzgerald Jun 2022

Smartphone Control Of Rc Cars, Weston R. Fitzgerald

Electrical Engineering

The smartphone-controlled RC (remote-controlled) car is an inexpensive remote-controlled car designed to be fast and portable. Instead of manufacturing, packaging, and shipping a separate controller, the remote control is implemented in a phone application, which saves time and money in both the design process and the manufacturing process. Utilizing the user’s smartphone is more cost-effective since mobile devices are a common recurrence, and packaging fewer devices results in overall better portability of the product.

This smartphone-controlled car is speedy and intuitive to learn for typical smartphone users. The user can change the car’s speed and direction wirelessly using their phone; …


Outdoor Operations Of Multiple Quadrotors In Windy Environment, Deepan Lobo May 2022

Outdoor Operations Of Multiple Quadrotors In Windy Environment, Deepan Lobo

Dissertations

Coordinated multiple small unmanned aerial vehicles (sUAVs) offer several advantages over a single sUAV platform. These advantages include improved task efficiency, reduced task completion time, improved fault tolerance, and higher task flexibility. However, their deployment in an outdoor environment is challenging due to the presence of wind gusts. The coordinated motion of a multi-sUAV system in the presence of wind disturbances is a challenging problem when considering collision avoidance (safety), scalability, and communication connectivity. Performing wind-agnostic motion planning for sUAVs may produce a sizeable cross-track error if the wind on the planned route leads to actuator saturation. In a multi-sUAV …


Automotive Sensor Fusion Systems For Traffic Aware Adaptive Cruise Control, Jonah T. Gandy May 2022

Automotive Sensor Fusion Systems For Traffic Aware Adaptive Cruise Control, Jonah T. Gandy

Theses and Dissertations

The autonomous driving (AD) industry is advancing at a rapid pace. New sensing technology for tracking vehicles, controlling vehicle behavior, and communicating with infrastructure are being added to commercial vehicles. These new automotive technologies reduce on road fatalities, improve ride quality, and improve vehicle fuel economy. This research explores two types of automotive sensor fusion systems: a novel radar/camera sensor fusion system using a long shortterm memory (LSTM) neural network (NN) to perform data fusion improving tracking capabilities in a simulated environment and a traditional radar/camera sensor fusion system that is deployed in Mississippi State’s entry in the EcoCAR Mobility …


Automated Robotic Light Bulb Testing Platform, Agha I. Akram, Muhammad Ali Ummy May 2022

Automated Robotic Light Bulb Testing Platform, Agha I. Akram, Muhammad Ali Ummy

Publications and Research

The main purpose of this project is to create a functional prototype of a multilayered system that incorporates aspects of electrical, mechanical, and computer engineering technology. The main objective of the system is to be able to determine whether a light bulb is working or not. The building blocks of this system are a robotic arm that is able to slide along a rail (for added mobility), a conveyor belt, and an electromechanical device that holds and tests light bulbs. Initially, the robot arm picks up a light bulb and places it into the holder which then tests it. A …


Control, Decision-Making, And Learning Approaches For Connected And Autonomous Driving Systems With Humans-In-The-Loop, Fangjian Li May 2022

Control, Decision-Making, And Learning Approaches For Connected And Autonomous Driving Systems With Humans-In-The-Loop, Fangjian Li

All Dissertations

By virtue of vehicular connectivity and automation, the vehicle becomes increasingly intelligent and self-driving capable. However, no matter what automation level the vehicle can achieve, humans will still be in the loop despite their roles. First, considering the manual driving car as a disturbance to the connected and autonomous vehicles (CAVs), a novel string stability is proposed for mixed traffic platoons consisting of both autonomous and manual driving cars to guarantee acceptable motion fluctuation and platoon safety. Furthermore, humans are naturally considered as the rider in the passenger vehicle. A human-centered cooperative adaptive cruise control (CACC) is designed to improve …


Autonomous Navigator Mobile Robot Upgrade, David Sansoucy Apr 2022

Autonomous Navigator Mobile Robot Upgrade, David Sansoucy

Thinking Matters Symposium

The mobile robot platform has been developed over the course of 10 years at USM. In Spring 2020, Belle-Isle and Werner updated the previous framework by rewriting the software to use the ROS framework running on an on-board Raspberry Pi 3. They also implemented navigation using an A* motion planning algorithm and image processing. In Summer 2021, Ames incorporated Lidar and Kinect sensors onto the robot to improve its real-time navigation capabilities. He also made improvements to the power distribution systems. This project aimed to build on the ROS frameworks developed by the previous 2 teams with the main goal …


Combat Robot, Wayne Lambert, Elijah Harris, Brian Eiseman, Jordan Meyer Apr 2022

Combat Robot, Wayne Lambert, Elijah Harris, Brian Eiseman, Jordan Meyer

ONU Student Research Colloquium

The senior capstone project that was tasked to the team was the decision of choosing a challenge within a national robotics competition. The group decided to compete at the National Robotics Challenge in Marion, Ohio. The idea was to participate in the combat robot competition at this NRC event. Once this decision had been made the next steps were to get an idea of what the rules and requirements of the competition were and to try and to sketch a very rough drawing of what the ideal robot should look like. From there it was decided to start a timeline …


Development Of A Compliant Gripper Driven By 3 Dof Soft Robot, Derek M. Price Ii, Ricardo Ramirez, Pt Angel Tran Apr 2022

Development Of A Compliant Gripper Driven By 3 Dof Soft Robot, Derek M. Price Ii, Ricardo Ramirez, Pt Angel Tran

Symposium of Student Scholars

Industrial robots are moving toward automation, which makes it increasingly necessary to replace the functions traditionally performed by humans with robotics. Pick and place operation is a prime example of such automation. Robots that pick up and place objects mimic the human action of picking an object up and placing it in a targeted location. It has led to the development of robotic end-effectors that have a human-like feel. Grippers can be articulated in various ways depending on their application area and well-defined desired tasks. As compliant and soft links deflect more under the same load than their rigid body …


Practical Considerations And Applications For Autonomous Robot Swarms, Rory Alan Hector Apr 2022

Practical Considerations And Applications For Autonomous Robot Swarms, Rory Alan Hector

LSU Doctoral Dissertations

In recent years, the study of autonomous entities such as unmanned vehicles has begun to revolutionize both military and civilian devices. One important research focus of autonomous entities has been coordination problems for autonomous robot swarms. Traditionally, robot models are used for algorithms that account for the minimum specifications needed to operate the swarm. However, these theoretical models also gloss over important practical details. Some of these details, such as time, have been considered before (as epochs of execution). In this dissertation, we examine these details in the context of several problems and introduce new performance measures to capture practical …


Physiological Signal Analysis For Emotion Estimation Of Children With Autism Spectrum Disorder, Janet Pulgares Soriano, Karla Conn Welch Phd Jan 2022

Physiological Signal Analysis For Emotion Estimation Of Children With Autism Spectrum Disorder, Janet Pulgares Soriano, Karla Conn Welch Phd

Posters-at-the-Capitol

The diagnosis of Autism Spectrum Disorder (ASD) in children is based on human observations by a clinician. The medical evaluation assesses deficits in social communication, social interaction, and restricted, repetitive behaviors. Robotic technology can assist in quantitatively measuring the observations to be used as a future tool for autism diagnosis and intervention. The project explores this technology to produce robotic partners that can adapt to the needs of the ASD population. This way, such robots could serve as instructors or learning peers. A friendly, partner robot, specifically designed for children with ASD could be used to investigate the effect of …


Formation Control With Bounded Controls And Collision Avoidance: Theory And Application To Quadrotor Unmanned Air Vehicles, Zachary S. Lippay Jan 2022

Formation Control With Bounded Controls And Collision Avoidance: Theory And Application To Quadrotor Unmanned Air Vehicles, Zachary S. Lippay

Theses and Dissertations--Mechanical Engineering

This dissertation presents new results on multi-agent formation control and applies the new control algorithms to quadrotor unmanned air vehicles. First, this dissertation presents a formation control algorithm for double-integrator agents, where the formation is time varying and the agents’ controls satisfy a priori bounds (e.g., the controls accommodate actuator saturation). The main analytic results provide sufficient conditions such that all agents converge to the desired time-varying relative positions with one another and the leader, and have a priori bounded controls (if applicable). We also present results from rotorcraft experiments that demonstrate the algorithm with time-varying formations and bounded controls. …


An Experimental Study Towards Underwater Propulsion System Using Structure Borne Traveling Waves, Shreyas Suhas Gadekar Jan 2022

An Experimental Study Towards Underwater Propulsion System Using Structure Borne Traveling Waves, Shreyas Suhas Gadekar

Dissertations, Master's Theses and Master's Reports

The method of generating steady-state structure-borne traveling waves underwater in an infinite media creates abundant opportunities in the field of propulsive applications, and they are gaining attention from several researchers. This experimental study provides a framework for harnessing traveling waves in a 1D beam immersed under quiescent water using two force input methods and providing a motion to an object floating on the surface of the water.

In this study, underwater traveling waves are tailored using structural vibrations at five different frequencies in the range of 10Hz to 300Hz. The resulting fluid motion provides a propulsive thrust that moves a …


Biomimetic Design, Modeling, And Adaptive Control Of Robotic Gripper For Optimal Grasping, Mushtaq Al-Mohammed Jan 2022

Biomimetic Design, Modeling, And Adaptive Control Of Robotic Gripper For Optimal Grasping, Mushtaq Al-Mohammed

Electronic Theses and Dissertations, 2020-

Grasping is an essential skill for almost every assistive robot. Variations in shape and/or weight of different objects involved in Activities of Daily Living (ADL) lead to complications, especially, when the robot is trying to grip novel objects for which it has no prior information –too much force will deform or crush the object while too little force will lead to slipping and possibly dropped objects. Thus, successful grasping requires the gripper to immobilize an object with the minimal force. In Chapter 2, we present the design, analysis, and experimental implementation of an adaptive control to facilitate 1-click grasping of …


A Machine Learning Approach To Intended Motion Prediction For Upper Extremity Exoskeletons, Justin Berdell Jan 2022

A Machine Learning Approach To Intended Motion Prediction For Upper Extremity Exoskeletons, Justin Berdell

Graduate Research Theses & Dissertations

A fully solid-state, software-defined, one-handed, handle-type control device built around a machine-learning (ML) model that provides intuitive and simultaneous control in position and orientation each in a full three degrees-of-freedom (DOF) is proposed in this paper. The device, referred to as the “Smart Handle”, and it is compact, lightweight, and only reliant on low-cost and readily available sensors and materials for construction. Mobility chairs for persons with motor difficulties could make use of a control device that can learn to recognize arbitrary inputs as control commands. Upper-extremity exoskeletons used in occupational settings and rehabilitation require a natural control device like …


Multimodal Adversarial Learning, Uche Osahor Jan 2022

Multimodal Adversarial Learning, Uche Osahor

Graduate Theses, Dissertations, and Problem Reports

Deep Convolutional Neural Networks (DCNN) have proven to be an exceptional tool for object recognition, generative modelling, and multi-modal learning in various computer vision applications. However, recent findings have shown that such state-of-the-art models can be easily deceived by inserting slight imperceptible perturbations to key pixels in the input. A good target detection systems can accurately identify targets by localizing their coordinates on the input image of interest. This is ideally achieved by labeling each pixel in an image as a background or a potential target pixel. However, prior research still confirms that such state of the art targets models …


Learning Robot Motion From Creative Human Demonstration, Charles C. Dietzel Jan 2022

Learning Robot Motion From Creative Human Demonstration, Charles C. Dietzel

Theses and Dissertations

This thesis presents a learning from demonstration framework that enables a robot to learn and perform creative motions from human demonstrations in real-time. In order to satisfy all of the functional requirements for the framework, the developed technique is comprised of two modular components, which integrate together to provide the desired functionality. The first component, called Dancing from Demonstration (DfD), is a kinesthetic learning from demonstration technique. This technique is capable of playing back newly learned motions in real-time, as well as combining multiple learned motions together in a configurable way, either to reduce trajectory error or to generate entirely …


Garden Bot: Autonomous Home Garden Weed Removal Robot, Brendon Lovejoy, Robert Connolly, Isaac Lucas, Stevan Veselinov Jan 2022

Garden Bot: Autonomous Home Garden Weed Removal Robot, Brendon Lovejoy, Robert Connolly, Isaac Lucas, Stevan Veselinov

Williams Honors College, Honors Research Projects

With frequent weeding being a tedious chore and an essential task for a successful garden, there is need for an automated method of handling this routine. Existing technologies utilize computer vision, GPS, multiple units and other tools to remove weeds from garden plots. However, these solutions are often complex and expensive, suited for large agricultural plots in contrast to small-scale home gardens. In addition, many of these technologies, along with manual tillers and cultivators suited for home use, are unable to perform weeding within rows of crops in a process known as intra-row weeding. The Garden Bot is an autonomous, …