Open Access. Powered by Scholars. Published by Universities.®

Robotics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Robotics

Dual-Axis Precision Imager, Gary Huarng Jun 2022

Dual-Axis Precision Imager, Gary Huarng

Computer Engineering

The Dual-Axis Precision Imager (DAPI) is a drawing robot that processes images and draws them on a whiteboard. The system has two modes: a Sobel filter mode that finds the edges of the input image with a Sobel filter, and a tri-tone grayscale mode that approximates the shading of the input image with the colors white, gray, and black. The DAPI consists of an Arduino-controlled XY gantry system with a pen mounted on the gantry head, and a Processing IDE program that processes the original image, converts the processed image into gantry instructions, and sends them to the Arduino for …


Developing A Miniature Smart Boat For Marine Research, Michael Isaac Eirinberg Jun 2022

Developing A Miniature Smart Boat For Marine Research, Michael Isaac Eirinberg

Computer Engineering

This project examines the development of a smart boat which could serve as a possible marine research apparatus. The smart boat consists of a miniature vessel containing a low-cost microcontroller to live stream a camera feed, GPS telemetry, and compass data through its own WiFi access point. The smart boat also has the potential for autonomous navigation. My project captivated the interest of several members of California Polytechnic State University, San Luis Obispo’s (Cal Poly SLO) Marine Science Department faculty, who proposed a variety of fascinating and valuable smart boat applications.


Weight Controlled Electric Skateboard, Zachary Barram, Carson Bertozzi, Vishnu Dodballapur Jun 2019

Weight Controlled Electric Skateboard, Zachary Barram, Carson Bertozzi, Vishnu Dodballapur

Computer Engineering

Technology and the way that humans interact is becoming more vital and omnipresent with every passing day. However, human interface device designers suffer from the increasingly popular “designed for me or people like me” syndrome. This design philosophy inherently limits accessibility and usability of technology to those like the designer. This places severe limits of usability to those who are not fully able as well as leaves non-traditional human interface devices unexplored. This project set out to explore a previously uncharted human interface device, on an electric skateboard, and compare it send user experience with industry leading human interface devices.


Real Time And High Fidelity Quadcopter Tracking System, Tyler Mckay Hall Dec 2017

Real Time And High Fidelity Quadcopter Tracking System, Tyler Mckay Hall

Computer Engineering

This project was conceived as a desired to have an affordable, flexible and physically compact tracking system for high accuracy spatial and orientation tracking. Specifically, this implementation is focused on providing a low cost motion capture system for future research. It is a tool to enable the further creation of systems that would require the use of accurate placement of landing pads, payload acquires and delivery. This system will provide the quadcopter platform a coordinate system that can be used in addition to GPS.

Field research with quadcopter manufacturers, photographers, agriculture and research organizations were contact and interviewed for information …


The Following Robot, Juan D. Cerda, Matthew S. Kwan, Vi M. Le Jun 2017

The Following Robot, Juan D. Cerda, Matthew S. Kwan, Vi M. Le

Computer Engineering

The objective of this project is to design, build, and test an autonomous robot with an associated Android application. The robot uses on board inertial measurement sensors (magnetometer, accelerometer, gyroscope) and coordinates itself through Bluetooth communication with the similar built­in measurement sensors on the Android phone to mimic and follow movement. The Following Robot incorporates the same basic movement functionality as a typical RC car. The robot follows the user’s phone through an application on one’s phone. This application accesses the phone’s accelerometer and gyroscope data and translates into appropriate conversions. Methods of tracking and calculating distance or angular displacement …


Electronic Deer Warning System, David Zhuo, Anlang Lu Dec 2016

Electronic Deer Warning System, David Zhuo, Anlang Lu

Computer Engineering

Deer-vehicle collisions (DVCs) are extremely dangerous, often injuring or even killing drivers. Unfortunately, this form of automotive accident is commonplace in the United States. According to the NHTSA, DVCs result in 200 human deaths a year.2

Despite these deadly incidents, there currently are no deployed federal or state systems for preventing DVCs. There are many consumer electronic deer deterrent products, but their long-term effectiveness is questionable.3 In fact, there does not appear to be much research into electronic deer deterrent systems. Aside from constant audio output and electric shock, no other means of electronic deterrent exist. Even if fixed deterrents …


Universal Uav Payload Interface, Nolan Reker, David Troy Jr, Drew Troxell Jun 2015

Universal Uav Payload Interface, Nolan Reker, David Troy Jr, Drew Troxell

Computer Engineering

Unmanned Aerial Vehicle (UAV) technology is becoming increasingly accessible for civilian use. Both open-source and commercial-purpose UAVs can be obtained affordably or even built. However, the platforms available are very segmented in their customization to a specific application (i.e. land surveying, payload delivery). This project aims to create a Universal Payload Interface (UPI) mounted to the underside of multi-rotors or other UAVs to enable the attachment of customizable sensor payloads. These payloads allow a single UAV to be rapidly reconfigured to perform a multitude of tasks.

The Universal Payload Interface facilitates communication between the payload, onboard flight controller, and operator …


Caddy: A 2005 Roborodentia Entry With Vision And Path Planning Abilities, Taylor Braun-Jones Mar 2013

Caddy: A 2005 Roborodentia Entry With Vision And Path Planning Abilities, Taylor Braun-Jones

Computer Engineering

Roborodentia is an autonomous robotics competition held each year during Cal Poly’s Open House. For the 2005 competition, robot entries needed to navigate a maze searching for three randomly placed golf balls, collect them, and then deposit the balls in the “nest” at the end of the maze. A newly added aspect for the 2005 competition included two bonus balls that were placed on a platform behind the wall in two predetermined corners of the maze.

Caddy is a robot that was entered into the 2005 Roborodentia competition. Caddy included a vision system that allowed searching for balls down untraveled …


Robot X, Alan Truong, Alex Haag Apr 2012

Robot X, Alan Truong, Alex Haag

Computer Engineering

The following report outlines the design decisions behind Robot X for the 2012 Cal Poly Roborodentia competition held annually during Open House. This investigation includes detailed overview of Robot X's sensory system, driving system, conveyor belt system, and can compartment system. In addition, basic hardware and software design are explored.


Project 308: Augmented Reality Mario Kart, Joseph Abad, David Allender, Joryl Calizo, Ryan Gaspar, Gavin Lee Jun 2011

Project 308: Augmented Reality Mario Kart, Joseph Abad, David Allender, Joryl Calizo, Ryan Gaspar, Gavin Lee

Computer Engineering

Mario Kart is a popular go-kart racing game developed by Nintendo. The premise of the game is simple: drive a go-kart along a racetrack and reach the finish line before the other players. What makes this game unique, however, is the inclusion of weapons, traps, and other projectiles that a player can use to gain an advantage in the race. We have taken on the challenge of not only recreating this amazing game, but using the art of Augmented Reality to fully immerse the player in the full experience. Rather than play the game on a television screen with a …


Ultrasonic Shark-Tag Locator System For Iver2 Auv, Nathaniel Garcia Jun 2010

Ultrasonic Shark-Tag Locator System For Iver2 Auv, Nathaniel Garcia

Computer Engineering

The purpose of this project is to develop a system for tracking an ultrasonic underwater transmitter that can be integrated into an IVER2 AUV to allow it to follow and monitor tagged sharks in the ocean for scientific research.

The system consists of a four main components including a shark-tag, two hydrophones, a filter/amplifier & threshold detector circuit, and a microcontroller.

This project, while not completing field testing and integration with the IVER2, is a proof of concept of a system that utilizes passive sonar to determine a bearing from the system to a shark-tag transmitter. Additionally, it devised several …