Open Access. Powered by Scholars. Published by Universities.®

Robotics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 32

Full-Text Articles in Robotics

Dual-Axis Precision Imager, Gary Huarng Jun 2022

Dual-Axis Precision Imager, Gary Huarng

Computer Engineering

The Dual-Axis Precision Imager (DAPI) is a drawing robot that processes images and draws them on a whiteboard. The system has two modes: a Sobel filter mode that finds the edges of the input image with a Sobel filter, and a tri-tone grayscale mode that approximates the shading of the input image with the colors white, gray, and black. The DAPI consists of an Arduino-controlled XY gantry system with a pen mounted on the gantry head, and a Processing IDE program that processes the original image, converts the processed image into gantry instructions, and sends them to the Arduino for …


Developing A Miniature Smart Boat For Marine Research, Michael Isaac Eirinberg Jun 2022

Developing A Miniature Smart Boat For Marine Research, Michael Isaac Eirinberg

Computer Engineering

This project examines the development of a smart boat which could serve as a possible marine research apparatus. The smart boat consists of a miniature vessel containing a low-cost microcontroller to live stream a camera feed, GPS telemetry, and compass data through its own WiFi access point. The smart boat also has the potential for autonomous navigation. My project captivated the interest of several members of California Polytechnic State University, San Luis Obispo’s (Cal Poly SLO) Marine Science Department faculty, who proposed a variety of fascinating and valuable smart boat applications.


Smartphone Control Of Rc Cars, Weston R. Fitzgerald Jun 2022

Smartphone Control Of Rc Cars, Weston R. Fitzgerald

Electrical Engineering

The smartphone-controlled RC (remote-controlled) car is an inexpensive remote-controlled car designed to be fast and portable. Instead of manufacturing, packaging, and shipping a separate controller, the remote control is implemented in a phone application, which saves time and money in both the design process and the manufacturing process. Utilizing the user’s smartphone is more cost-effective since mobile devices are a common recurrence, and packaging fewer devices results in overall better portability of the product.

This smartphone-controlled car is speedy and intuitive to learn for typical smartphone users. The user can change the car’s speed and direction wirelessly using their phone; …


Reading Robot, Gillian Watts, Andrew Myers, Sabrinna Tan, Taylor Klein, Omeed Djassemi Jun 2020

Reading Robot, Gillian Watts, Andrew Myers, Sabrinna Tan, Taylor Klein, Omeed Djassemi

General Engineering

Presently, there is an insufficient availability of human experts to assist students in reading competency and comprehension. Our team’s goal was to create an improved socially assistive robot for use by therapists, teachers, and parents to help children and adults develop reading skills while they do not have access to specialists. HAPI is a socially assistive robot that we created with the goal of helping students practice their reading comprehension skills. HAPI enables a student to improve their reading skills without an educator present, while enabling educators to review the student's performance remotely. Design constraints included: physical size, weight, duration …


Lawn Buddy, Jayson Johnston, Andrew Brown, Jacob Maljian Jun 2020

Lawn Buddy, Jayson Johnston, Andrew Brown, Jacob Maljian

Electrical Engineering

Grass lawns are a common hallmark of the American home. In 2019, a survey from the National Association of Landscape Professionals found that 81% of all Americans owned a lawn [1]. Mowing is a time consuming and costly chore that is part of maintaining a grass lawn. The manual labor in mowing a lawn can exceed 40 hours per year [2]. People commonly incur weekly costs on mowing services to save time. Traditional gas powered mowers are physically demanding and use engines that need routine maintenance. They operate loudly enough that users should be wearing hearing protection and the noise …


Decentralized, Noncooperative Multirobot Path Planning With Sample-Basedplanners, William Le Mar 2020

Decentralized, Noncooperative Multirobot Path Planning With Sample-Basedplanners, William Le

Master's Theses

In this thesis, the viability of decentralized, noncooperative multi-robot path planning algorithms is tested. Three algorithms based on the Batch Informed Trees (BIT*) algorithm are presented. The first of these algorithms combines Optimal Reciprocal Collision Avoidance (ORCA) with BIT*. The second of these algorithms uses BIT* to create a path which the robots then follow using an artificial potential field (APF) method. The final algorithm is a version of BIT* that supports replanning. While none of these algorithms take advantage of sharing information between the robots, the algorithms are able to guide the robots to their desired goals, with the …


An Application Of Sliding Mode Control To Model-Based Reinforcement Learning, Aaron Thomas Parisi Sep 2019

An Application Of Sliding Mode Control To Model-Based Reinforcement Learning, Aaron Thomas Parisi

Master's Theses

The state-of-art model-free reinforcement learning algorithms can generate admissible controls for complicated systems with no prior knowledge of the system dynamics, so long as sufficient (oftentimes millions) of samples are available from the environ- ment. On the other hand, model-based reinforcement learning approaches seek to leverage known optimal or robust control to reinforcement learning tasks by mod- elling the system dynamics and applying well established control algorithms to the system model. Sliding-mode controllers are robust to system disturbance and modelling errors, and have been widely used for high-order nonlinear system control. This thesis studies the application of sliding mode control …


Utilizing Trajectory Optimization In The Training Of Neural Network Controllers, Nicholas Kimball Sep 2019

Utilizing Trajectory Optimization In The Training Of Neural Network Controllers, Nicholas Kimball

Master's Theses

Applying reinforcement learning to control systems enables the use of machine learning to develop elegant and efficient control laws. Coupled with the representational power of neural networks, reinforcement learning algorithms can learn complex policies that can be difficult to emulate using traditional control system design approaches. In this thesis, three different model-free reinforcement learning algorithms, including Monte Carlo Control, REINFORCE with baseline, and Guided Policy Search are compared in simulated, continuous action-space environments. The results show that the Guided Policy Search algorithm is able to learn a desired control policy much faster than the other algorithms. In the inverted pendulum …


Weight Controlled Electric Skateboard, Zachary Barram, Carson Bertozzi, Vishnu Dodballapur Jun 2019

Weight Controlled Electric Skateboard, Zachary Barram, Carson Bertozzi, Vishnu Dodballapur

Computer Engineering

Technology and the way that humans interact is becoming more vital and omnipresent with every passing day. However, human interface device designers suffer from the increasingly popular “designed for me or people like me” syndrome. This design philosophy inherently limits accessibility and usability of technology to those like the designer. This places severe limits of usability to those who are not fully able as well as leaves non-traditional human interface devices unexplored. This project set out to explore a previously uncharted human interface device, on an electric skateboard, and compare it send user experience with industry leading human interface devices.


Roborodentia Robot: Treadbot, Stephen C. Schmidt Jun 2018

Roborodentia Robot: Treadbot, Stephen C. Schmidt

Computer Science and Software Engineering

This document is a summary of my contest entry to the 2018 Cal Poly Roborodentia competition. It is meant to be a process overview and design outline of the mechanical, electrical, and software components of my robot.


Corridor Navigation For Monocular Vision Mobile Robots, Matthew James Ng Jun 2018

Corridor Navigation For Monocular Vision Mobile Robots, Matthew James Ng

Master's Theses

Monocular vision robots use a single camera to process information about its environment. By analyzing this scene, the robot can determine the best navigation direction. Many modern approaches to robot hallway navigation involve using a plethora of sensors to detect certain features in the environment. This can be laser range finders, inertial measurement units, motor encoders, and cameras.

By combining all these sensors, there is unused data which could be useful for navigation. To draw back and develop a baseline approach, this thesis explores the reliability and capability of solely using a camera for navigation. The basic navigation structure begins …


Artificial Neural Network-Based Robotic Control, Justin Ng Jun 2018

Artificial Neural Network-Based Robotic Control, Justin Ng

Master's Theses

Artificial neural networks (ANNs) are highly-capable alternatives to traditional problem solving schemes due to their ability to solve non-linear systems with a nonalgorithmic approach. The applications of ANNs range from process control to pattern recognition and, with increasing importance, robotics. This paper demonstrates continuous control of a robot using the deep deterministic policy gradients (DDPG) algorithm, an actor-critic reinforcement learning strategy, originally conceived by Google DeepMind. After training, the robot performs controlled locomotion within an enclosed area. The paper also details the robot design process and explores the challenges of implementation in a real-time system.


Towards Autonomous Localization Of An Underwater Drone, Nathan Sfard Jun 2018

Towards Autonomous Localization Of An Underwater Drone, Nathan Sfard

Master's Theses

Autonomous vehicle navigation is a complex and challenging task. Land and aerial vehicles often use highly accurate GPS sensors to localize themselves in their environments. These sensors are ineffective in underwater environments due to signal attenuation. Autonomous underwater vehicles utilize one or more of the following approaches for successful localization and navigation: inertial/dead-reckoning, acoustic signals, and geophysical data. This thesis examines autonomous localization in a simulated environment for an OpenROV Underwater Drone using a Kalman Filter. This filter performs state estimation for a dead reckoning system exhibiting an additive error in location measurements. We evaluate the accuracy of this Kalman …


Real Time And High Fidelity Quadcopter Tracking System, Tyler Mckay Hall Dec 2017

Real Time And High Fidelity Quadcopter Tracking System, Tyler Mckay Hall

Computer Engineering

This project was conceived as a desired to have an affordable, flexible and physically compact tracking system for high accuracy spatial and orientation tracking. Specifically, this implementation is focused on providing a low cost motion capture system for future research. It is a tool to enable the further creation of systems that would require the use of accurate placement of landing pads, payload acquires and delivery. This system will provide the quadcopter platform a coordinate system that can be used in addition to GPS.

Field research with quadcopter manufacturers, photographers, agriculture and research organizations were contact and interviewed for information …


The Following Robot, Juan D. Cerda, Matthew S. Kwan, Vi M. Le Jun 2017

The Following Robot, Juan D. Cerda, Matthew S. Kwan, Vi M. Le

Computer Engineering

The objective of this project is to design, build, and test an autonomous robot with an associated Android application. The robot uses on board inertial measurement sensors (magnetometer, accelerometer, gyroscope) and coordinates itself through Bluetooth communication with the similar built­in measurement sensors on the Android phone to mimic and follow movement. The Following Robot incorporates the same basic movement functionality as a typical RC car. The robot follows the user’s phone through an application on one’s phone. This application accesses the phone’s accelerometer and gyroscope data and translates into appropriate conversions. Methods of tracking and calculating distance or angular displacement …


Remote Cable Gantry, Allen L. Bailey Jun 2017

Remote Cable Gantry, Allen L. Bailey

Electrical Engineering

The Remote Cable Gantry is a robotic system that was initially intended to aid in the art of aerial videography. It was designed to enable novice and expert users alike to capture both video footage and audio from perspectives unachievable by current methods. This system uses a series of cables to control the position of a camera gimbal in a defined 3D space and, as a self-contained unit, is portable and easy to use. The Remote Cable Gantry offers a quiet, intuitive, and safe alternative to existing technology, which has been limiting the market and potential of aerial photography and …


Light Sensing Automated Blinds, Andrew B. Hodges, Ryan C. Flick Jun 2017

Light Sensing Automated Blinds, Andrew B. Hodges, Ryan C. Flick

Electrical Engineering

This project is solving the problem of wasted energy within buildings and homes, because currently the lights turned on inside building do not utilize natural, ambient light from the sun. Rather than having unnecessary light from a light source, the automated light sensing smart blinds can sense the amount of light outside the window and in the room, and then adjust the angle of the blinds to save energy by utilizing the available outdoor light. This way, the light source will not be running at maximum power output while there is excess light coming through the window. This project aims …


Blend It Wine Blending Distribution System, Connor Clarry, Russell Temple, Matt Moren Jun 2017

Blend It Wine Blending Distribution System, Connor Clarry, Russell Temple, Matt Moren

Mechanical Engineering

No abstract provided.


Electronic Deer Warning System, David Zhuo, Anlang Lu Dec 2016

Electronic Deer Warning System, David Zhuo, Anlang Lu

Computer Engineering

Deer-vehicle collisions (DVCs) are extremely dangerous, often injuring or even killing drivers. Unfortunately, this form of automotive accident is commonplace in the United States. According to the NHTSA, DVCs result in 200 human deaths a year.2

Despite these deadly incidents, there currently are no deployed federal or state systems for preventing DVCs. There are many consumer electronic deer deterrent products, but their long-term effectiveness is questionable.3 In fact, there does not appear to be much research into electronic deer deterrent systems. Aside from constant audio output and electric shock, no other means of electronic deterrent exist. Even if fixed deterrents …


A Stroke Therapy Brace Design, Evan Kirkbride Jun 2016

A Stroke Therapy Brace Design, Evan Kirkbride

Electrical Engineering

Victims of stroke often have difficulty with rehabilitation. With limited movement on their affected arm, patients often do not want to move much for physical therapy. In this project, we design a robotic brace that helps stroke patients move their arm more effectively in a reaching or pulling motion. By giving patients more movement in their affected arm than they would have otherwise, patients gain more from rehabilitation. The brace also adapts to the patient’s needs, providing more inclination or resistance as needed for their physical therapy. This kind of therapy engages patients rather than relying on their likely dwindled …


A Lidar Based Semi-Autonomous Collision Avoidance System And The Development Of A Hardware-In-The-Loop Simulator To Aid In Algorithm Development And Human Studies, Thomas F. Stevens Dec 2015

A Lidar Based Semi-Autonomous Collision Avoidance System And The Development Of A Hardware-In-The-Loop Simulator To Aid In Algorithm Development And Human Studies, Thomas F. Stevens

Master's Theses

In this paper, the architecture and implementation of an embedded controller for a steering based semi-autonomous collision avoidance system on a 1/10th scale model is presented. In addition, the development of a 2D hardware-in-the-loop simulator with vehicle dynamics based on the bicycle model is described. The semi-autonomous collision avoidance software is fully contained onboard a single-board computer running embedded GNU/Linux. To eliminate any wired tethers that limit the system’s abilities, the driver operates the vehicle at a user-control-station through a wireless Bluetooth interface. The user-control-station is outfitted with a game-controller that provides standard steering wheel and pedal controls along …


Universal Uav Payload Interface, Nolan Reker, David Troy Jr, Drew Troxell Jun 2015

Universal Uav Payload Interface, Nolan Reker, David Troy Jr, Drew Troxell

Computer Engineering

Unmanned Aerial Vehicle (UAV) technology is becoming increasingly accessible for civilian use. Both open-source and commercial-purpose UAVs can be obtained affordably or even built. However, the platforms available are very segmented in their customization to a specific application (i.e. land surveying, payload delivery). This project aims to create a Universal Payload Interface (UPI) mounted to the underside of multi-rotors or other UAVs to enable the attachment of customizable sensor payloads. These payloads allow a single UAV to be rapidly reconfigured to perform a multitude of tasks.

The Universal Payload Interface facilitates communication between the payload, onboard flight controller, and operator …


Innovative Connectivity Ensuring Education (I.-C.E.E.), Luke Cole, Andrew Ma, Nicholas Ross, Daniel Williams Jun 2015

Innovative Connectivity Ensuring Education (I.-C.E.E.), Luke Cole, Andrew Ma, Nicholas Ross, Daniel Williams

Electrical Engineering

This is the critical design review for the Telepresence/Telerobotic Technology for Children with Disabilities Project by team I.- C.E.E. (Innovative Connectivity Ensuring Education). This report details our telepresence system design for our client (Nathan Stilts) including design choices/justification, testing verification and procedures, and chosen components for implementation. There are seven chapters in total starting with introductory/background information followed by hardware and software design, verification, and testing and concludes with the current status of the project and what future work may need to be included.


Telepresence: Design, Implementation And Study Of An Hmd-Controlled Avatar With A Mechatronic Approach, Darren Michael Chan Jun 2015

Telepresence: Design, Implementation And Study Of An Hmd-Controlled Avatar With A Mechatronic Approach, Darren Michael Chan

Master's Theses

Telepresence describes technologies that allow users to remotely experience the sensation of being present at an event without being physically present. An avatar exists to represent the user whilst in a remote location and is tasked to collect stimuli from its immediate surroundings to be delivered to the user for consumption. With the advent of recent developments in Virtual Reality technology, viz., head-mounted displays (HMDs), new possibilities have been enabled in the field of Telepresence. The main focus of this thesis is to develop a solution for visual Telepresence, where an HMD is used to control the direction of a …


Automated Foosball Table, Jim R. Stefani, Alex J. Herpy, Brett Gordon Jaeger, Kevin S. Haydon, Derek Alan Hamel Jun 2014

Automated Foosball Table, Jim R. Stefani, Alex J. Herpy, Brett Gordon Jaeger, Kevin S. Haydon, Derek Alan Hamel

Mechanical Engineering

This project is the second iteration of an automated foosball table for Yaskawa America as a trade show display. The table is meant to provide an interactive experience which highlights the speed and precision of the Yaskawa hardware. The first iteration of the project was mainly focused on creating the physical hardware for the system and to begin the basic programming for the system. This phase of the project was focused on finalizing the physical hardware of the system, implementing the vision system and to continue the basic programing of the system AI. A third team will be assigned to …


Caddy: A 2005 Roborodentia Entry With Vision And Path Planning Abilities, Taylor Braun-Jones Mar 2013

Caddy: A 2005 Roborodentia Entry With Vision And Path Planning Abilities, Taylor Braun-Jones

Computer Engineering

Roborodentia is an autonomous robotics competition held each year during Cal Poly’s Open House. For the 2005 competition, robot entries needed to navigate a maze searching for three randomly placed golf balls, collect them, and then deposit the balls in the “nest” at the end of the maze. A newly added aspect for the 2005 competition included two bonus balls that were placed on a platform behind the wall in two predetermined corners of the maze.

Caddy is a robot that was entered into the 2005 Roborodentia competition. Caddy included a vision system that allowed searching for balls down untraveled …


Polygrasp: Reach; Myoelectric Prosthetic Hand Iteration, Devon Patrick Augustus, Mighells Blaed Deuel, Ian Noel Fraser, Nicholas Philip Moesser Jun 2012

Polygrasp: Reach; Myoelectric Prosthetic Hand Iteration, Devon Patrick Augustus, Mighells Blaed Deuel, Ian Noel Fraser, Nicholas Philip Moesser

Mechanical Engineering

Amputations are a common occurrence in soldiers returning home who have suffered the effects of IED and munitions explosions. For upper limb amputees, trans-radial amputations are the most common. Traditional hook devices do not offer an adequate level of normalcy for users, prompting the use of myoelectric devices. While current myoelectric devices do offer a more natural experience, they come with a host of other problems that makes their adoption by service personnel not desirable or not permitted by the VA. PolyGrasp Reach seeks to reduce weight and cost and improve performance. This addresses several of the issues with devices …


Robot X, Alan Truong, Alex Haag Apr 2012

Robot X, Alan Truong, Alex Haag

Computer Engineering

The following report outlines the design decisions behind Robot X for the 2012 Cal Poly Roborodentia competition held annually during Open House. This investigation includes detailed overview of Robot X's sensory system, driving system, conveyor belt system, and can compartment system. In addition, basic hardware and software design are explored.


Project 308: Augmented Reality Mario Kart, Joseph Abad, David Allender, Joryl Calizo, Ryan Gaspar, Gavin Lee Jun 2011

Project 308: Augmented Reality Mario Kart, Joseph Abad, David Allender, Joryl Calizo, Ryan Gaspar, Gavin Lee

Computer Engineering

Mario Kart is a popular go-kart racing game developed by Nintendo. The premise of the game is simple: drive a go-kart along a racetrack and reach the finish line before the other players. What makes this game unique, however, is the inclusion of weapons, traps, and other projectiles that a player can use to gain an advantage in the race. We have taken on the challenge of not only recreating this amazing game, but using the art of Augmented Reality to fully immerse the player in the full experience. Rather than play the game on a television screen with a …


Autonomous Crash Avoidance System, Brian Ujiie, Gordon Woods, Joshua Miller Jun 2011

Autonomous Crash Avoidance System, Brian Ujiie, Gordon Woods, Joshua Miller

Mechanical Engineering

No abstract provided.