Open Access. Powered by Scholars. Published by Universities.®

Robotics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 22 of 22

Full-Text Articles in Robotics

Autonomous Shipwreck Detection & Mapping, William Ard Aug 2023

Autonomous Shipwreck Detection & Mapping, William Ard

LSU Master's Theses

This thesis presents the development and testing of Bruce, a low-cost hybrid Remote Operated Vehicle (ROV) / Autonomous Underwater Vehicle (AUV) system for the optical survey of marine archaeological sites, as well as a novel sonar image augmentation strategy for semantic segmentation of shipwrecks. This approach takes side-scan sonar and bathymetry data collected using an EdgeTech 2205 AUV sensor integrated with an Harris Iver3, and generates augmented image data to be used for the semantic segmentation of shipwrecks. It is shown that, due to the feature enhancement capabilities of the proposed shipwreck detection strategy, correctly identified areas have a 15% …


Human Tracking Function For Robotic Dog, Andrew Sharkey Jan 2023

Human Tracking Function For Robotic Dog, Andrew Sharkey

Williams Honors College, Honors Research Projects

With the increase the increase in automation and humans and robots working side by side, there is a need for a more organic way of controlling robots. The goal of this project is to create a control system for Boston dynamics robotic dog Spot that implements human tracking image software to follow humans using computer vision as well as using hand tracking image software to allow for control input through hand gestures.


Neuromorphic Computing Applications In Robotics, Noah Zins Jan 2023

Neuromorphic Computing Applications In Robotics, Noah Zins

Dissertations, Master's Theses and Master's Reports

Deep learning achieves remarkable success through training using massively labeled datasets. However, the high demands on the datasets impede the feasibility of deep learning in edge computing scenarios and suffer from the data scarcity issue. Rather than relying on labeled data, animals learn by interacting with their surroundings and memorizing the relationships between events and objects. This learning paradigm is referred to as associative learning. The successful implementation of associative learning imitates self-learning schemes analogous to animals which resolve the challenges of deep learning. Current state-of-the-art implementations of associative memory are limited to simulations with small-scale and offline paradigms. Thus, …


Enabling The Human Perception Of A Working Camera In Web Conferences Via Its Movement, Anish Shrestha Nov 2022

Enabling The Human Perception Of A Working Camera In Web Conferences Via Its Movement, Anish Shrestha

LSU Master's Theses

In recent years, video conferencing has seen a significant increase in its usage due to the COVID-19 pandemic. When casting user’s video to other participants, the videoconference applications (e.g. Zoom, FaceTime, Skype, etc.) mainly leverage 1) webcam’s LED-light indicator, 2) user’s video feedback in the software and 3) the software’s video on/off icons to remind the user whether the camera is being used. However, these methods all impose the responsibility on the user itself to check the camera status, and there have been numerous cases reported when users expose their privacy inadvertently due to not realizing that their camera is …


Developing A Miniature Smart Boat For Marine Research, Michael Isaac Eirinberg Jun 2022

Developing A Miniature Smart Boat For Marine Research, Michael Isaac Eirinberg

Computer Engineering

This project examines the development of a smart boat which could serve as a possible marine research apparatus. The smart boat consists of a miniature vessel containing a low-cost microcontroller to live stream a camera feed, GPS telemetry, and compass data through its own WiFi access point. The smart boat also has the potential for autonomous navigation. My project captivated the interest of several members of California Polytechnic State University, San Luis Obispo’s (Cal Poly SLO) Marine Science Department faculty, who proposed a variety of fascinating and valuable smart boat applications.


Learning Robot Motion From Creative Human Demonstration, Charles C. Dietzel Jan 2022

Learning Robot Motion From Creative Human Demonstration, Charles C. Dietzel

Theses and Dissertations

This thesis presents a learning from demonstration framework that enables a robot to learn and perform creative motions from human demonstrations in real-time. In order to satisfy all of the functional requirements for the framework, the developed technique is comprised of two modular components, which integrate together to provide the desired functionality. The first component, called Dancing from Demonstration (DfD), is a kinesthetic learning from demonstration technique. This technique is capable of playing back newly learned motions in real-time, as well as combining multiple learned motions together in a configurable way, either to reduce trajectory error or to generate entirely …


Factors Influencing The Effectiveness Of Managing Human–Robot Teams, Theodore B. Terry Jan 2022

Factors Influencing The Effectiveness Of Managing Human–Robot Teams, Theodore B. Terry

Walden Dissertations and Doctoral Studies

Certain factors can influence the capabilities of a robot–human team by affecting their social and behavioral dynamics in a work environment. But these factors were not known due to the progressive nature of human–robot partnerships and a lack of peer-reviewed literature on the topic. This e-Delphi study aimed to identify and understand these unknown influential factors based on the participants’ insights. The overarching research question asked about the need to determine factors that might influence the effectiveness of managing human-robot teams. The basis for the conceptual framework for this study was the theory of communication used in organizational management. Twelve …


A Human-Embodied Drone For Dexterous Aerial Manipulation, Dongbin Kim Dec 2021

A Human-Embodied Drone For Dexterous Aerial Manipulation, Dongbin Kim

UNLV Theses, Dissertations, Professional Papers, and Capstones

Current drones perform a wide variety of tasks in surveillance, photography, agriculture, package delivery, etc. However, these tasks are performed passively without the use of human interaction. Aerial manipulation shifts this paradigm and implements drones with robotic arms that allow interaction with the environment rather than simply sensing it. For example, in construction, aerial manipulation in conjunction with human interaction could allow operators to perform several tasks, such as hosing decks, drill into surfaces, and sealing cracks via a drone. This integration with drones will henceforth be known as dexterous aerial manipulation.

Our recent work integrated the worker’s experience into …


Data-Driven Learning For Robot Physical Intelligence, Leidi Zhao Aug 2021

Data-Driven Learning For Robot Physical Intelligence, Leidi Zhao

Dissertations

The physical intelligence, which emphasizes physical capabilities such as dexterous manipulation and dynamic mobility, is essential for robots to physically coexist with humans. Much research on robot physical intelligence has achieved success on hyper robot motor capabilities, but mostly through heavily case-specific engineering. Meanwhile, in terms of robot acquiring skills in a ubiquitous manner, robot learning from human demonstration (LfD) has achieved great progress, but still has limitations handling dynamic skills and compound actions. In this dissertation, a composite learning scheme which goes beyond LfD and integrates robot learning from human definition, demonstration, and evaluation is proposed. This method tackles …


Object Manipulation With Modular Planar Tensegrity Robots, Maxine Perroni-Scharf Jun 2021

Object Manipulation With Modular Planar Tensegrity Robots, Maxine Perroni-Scharf

Dartmouth College Undergraduate Theses

This thesis explores the creation of a novel two-dimensional tensegrity-based mod- ular system. When individual planar modules are linked together, they form a larger tensegrity robot that can be used to achieve non-prehensile manipulation. The first half of this dissertation focuses on the study of preexisting types of tensegrity mod- ules and proposes different possible structures and arrangements of modules. The second half describes the construction and actuation of a modular 2D robot com- posed of planar three-bar tensegrity structures. We conclude that tensegrity modules are suitably adapted to object manipulation and propose a future extension of the modular 2D …


A Comprehensive And Modular Robotic Control Framework For Model-Less Control Law Development Using Reinforcement Learning For Soft Robotics, Charles Sullivan Jan 2020

A Comprehensive And Modular Robotic Control Framework For Model-Less Control Law Development Using Reinforcement Learning For Soft Robotics, Charles Sullivan

Open Access Theses & Dissertations

Soft robotics is a growing field in robotics research. Heavily inspired by biological systems, these robots are made of softer, non-linear, materials such as elastomers and are actuated using several novel methods, from fluidic actuation channels to shape changing materials such as electro-active polymers. Highly non-linear materials make modeling difficult, and sensors are still an area of active research. These issues have rendered typical control and modeling techniques often inadequate for soft robotics. Reinforcement learning is a branch of machine learning that focuses on model-less control by mapping states to actions that maximize a specific reward signal. Reinforcement learning has …


Communication Capability For A Simulation-Based Test And Evaluation Framework For Autonomous Systems, Ntiana Sakioti Oct 2019

Communication Capability For A Simulation-Based Test And Evaluation Framework For Autonomous Systems, Ntiana Sakioti

Computational Modeling & Simulation Engineering Theses & Dissertations

The design and testing process for collaborative autonomous systems can be extremely complex and time-consuming, so it is advantageous to begin testing early in the design. A Test & Evaluation (T&E) Framework was previously developed to enable the testing of autonomous software at various levels of mixed reality. The Framework assumes a modular approach to autonomous software development, which introduces the possibility that components are not in the same stage of development. The T&E Framework allows testing to begin early in a simulated environment, with the autonomous software methodically migrating from virtual to augmented to physical environments as component development …


Exploring The Behavior Repertoire Of A Wireless Vibrationally Actuated Tensegrity Robot, Zongliang Ji Jun 2019

Exploring The Behavior Repertoire Of A Wireless Vibrationally Actuated Tensegrity Robot, Zongliang Ji

Honors Theses

Soft robotics is an emerging field of research due to its potential to explore and operate in unstructured, rugged, and dynamic environments. However, the properties that make soft robots compelling also make them difficult to robustly control. Here at Union, we developed the world’s first wireless soft tensegrity robot. The goal of my thesis is to explore effective and efficient methods to explore the diverse behavior our tensegrity robot. We will achieve that by applying state-of-art machine learning technique and a novelty search algorithm.


Exploring Cyber-Physical Systems, Misbah Uddin Mohammed Jan 2019

Exploring Cyber-Physical Systems, Misbah Uddin Mohammed

Graduate Research Theses & Dissertations

The advances in IOT, Computer Vision, AI and Machine Learning have made these technologies ubiquitous to our daily lives. From Smart Phones to Connected Vehicles, Cyber Physical systems have been interspersed into everything we interact in today’s world. The aim or this thesis was to explore these advances in Cyber Physical Systems and analyze the different sectors they were affecting. We then hand-picked certain domains and explored further by carrying out practical projects using some of the latest software and hardware resources available. Technologies like Amazon Alexa services, NVIDIA Jetson boards, TensorFlow, OpenCV, NodeJS were heavily employed in our various …


Integration Of Robotic Perception, Action, And Memory, Li Yang Ku Oct 2018

Integration Of Robotic Perception, Action, And Memory, Li Yang Ku

Doctoral Dissertations

In the book "On Intelligence", Hawkins states that intelligence should be measured by the capacity to memorize and predict patterns. I further suggest that the ability to predict action consequences based on perception and memory is essential for robots to demonstrate intelligent behaviors in unstructured environments. However, traditional approaches generally represent action and perception separately---as computer vision modules that recognize objects and as planners that execute actions based on labels and poses. I propose here a more integrated approach where action and perception are combined in a memory model, in which a sequence of actions can be planned based on …


Development Of A Locomotion And Balancing Strategy For Humanoid Robots, Emile Bahdi Jan 2018

Development Of A Locomotion And Balancing Strategy For Humanoid Robots, Emile Bahdi

Electronic Theses and Dissertations

The locomotion ability and high mobility are the most distinguished features of humanoid robots. Due to the non-linear dynamics of walking, developing and controlling the locomotion of humanoid robots is a challenging task. In this thesis, we study and develop a walking engine for the humanoid robot, NAO, which is the official robotic platform used in the RoboCup Spl. Aldebaran Robotics, the manufacturing company of NAO provides a walking module that has disadvantages, such as being a black box that does not provide control of the gait as well as the robot walk with a bent knee. The latter disadvantage, …


Belief-Space Planning For Resourceful Manipulation And Mobility, Dirk Ruiken Jul 2017

Belief-Space Planning For Resourceful Manipulation And Mobility, Dirk Ruiken

Doctoral Dissertations

Robots are increasingly expected to work in partially observable and unstructured environments. They need to select actions that exploit perceptual and motor resourcefulness to manage uncertainty based on the demands of the task and environment. The research in this dissertation makes two primary contributions. First, it develops a new concept in resourceful robot platforms called the UMass uBot and introduces the sixth and seventh in the uBot series. uBot-6 introduces multiple postural configurations that enable different modes of mobility and manipulation to meet the needs of a wide variety of tasks and environmental constraints. uBot-7 extends this with the use …


Learning Parameterized Skills, Bruno Castro Da Silva Mar 2015

Learning Parameterized Skills, Bruno Castro Da Silva

Doctoral Dissertations

One of the defining characteristics of human intelligence is the ability to acquire and refine skills. Skills are behaviors for solving problems that an agent encounters often—sometimes in different contexts and situations—throughout its lifetime. Identifying important problems that recur and retaining their solutions as skills allows agents to more rapidly solve novel problems by adjusting and combining their existing skills. In this thesis we introduce a general framework for learning reusable parameterized skills. Reusable skills are parameterized procedures that—given a description of a problem to be solved—produce appropriate behaviors or policies. They can be sequentially and hierarchically combined with other …


Designing A Biomimetic Testing Platform For Actuators In A Series-Elastic Co-Contraction System, Ryan Tyler Schroeder Dec 2014

Designing A Biomimetic Testing Platform For Actuators In A Series-Elastic Co-Contraction System, Ryan Tyler Schroeder

UNLV Theses, Dissertations, Professional Papers, and Capstones

Actuators determine the performance of robotic systems at the most intimate of levels. As a result, much work has been done to assess the performance of different actuator systems. However, biomimetics has not previously been utilized as a pretext for tuning a series elastic actuator system with the purpose of designing an empirical testing platform. Thus, an artificial muscle tendon system has been developed in order to assess the performance of two distinct actuator types: (1) direct current electromagnetic motors and (2) ultrasonic rotary piezoelectric motors. Because the design of the system takes advantage of biomimetic operating principles such as …


3d Robotic Sensing Of People: Human Perception, Representation And Activity Recognition, Hao Zhang Aug 2014

3d Robotic Sensing Of People: Human Perception, Representation And Activity Recognition, Hao Zhang

Doctoral Dissertations

The robots are coming. Their presence will eventually bridge the digital-physical divide and dramatically impact human life by taking over tasks where our current society has shortcomings (e.g., search and rescue, elderly care, and child education). Human-centered robotics (HCR) is a vision to address how robots can coexist with humans and help people live safer, simpler and more independent lives.

As humans, we have a remarkable ability to perceive the world around us, perceive people, and interpret their behaviors. Endowing robots with these critical capabilities in highly dynamic human social environments is a significant but very challenging problem in practical …


Semantically Grounded Learning From Unstructured Demonstrations, Scott D. Niekum Sep 2013

Semantically Grounded Learning From Unstructured Demonstrations, Scott D. Niekum

Open Access Dissertations

Robots exhibit flexible behavior largely in proportion to their degree of semantic knowledge about the world. Such knowledge is often meticulously hand-coded for a narrow class of tasks, limiting the scope of possible robot competencies. Thus, the primary limiting factor of robot capabilities is often not the physical attributes of the robot, but the limited time and skill of expert programmers. One way to deal with the vast number of situations and environments that robots face outside the laboratory is to provide users with simple methods for programming robots that do not require the skill of an expert.

For this …


Human Intention Recognition Based Assisted Telerobotic Grasping Of Objects In An Unstructured Environment, Karan Hariharan Khokar Jan 2013

Human Intention Recognition Based Assisted Telerobotic Grasping Of Objects In An Unstructured Environment, Karan Hariharan Khokar

USF Tampa Graduate Theses and Dissertations

In this dissertation work, a methodology is proposed to enable a robot to identify an object to be grasped and its intended grasp configuration while a human is teleoperating a robot towards the desired object. Based on the detected object and grasp configuration, the human is assisted in the teleoperation task. The environment is unstructured and consists of a number of objects, each with various possible grasp configurations. The identification of the object and the grasp configuration is carried out in real time, by recognizing the intention of the human motion. Simultaneously, the human user is assisted to preshape over …