Open Access. Powered by Scholars. Published by Universities.®

Robotics Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

Robotics

University of Massachusetts Amherst

Articles 1 - 4 of 4

Full-Text Articles in Robotics

Integration Of Robotic Perception, Action, And Memory, Li Yang Ku Oct 2018

Integration Of Robotic Perception, Action, And Memory, Li Yang Ku

Doctoral Dissertations

In the book "On Intelligence", Hawkins states that intelligence should be measured by the capacity to memorize and predict patterns. I further suggest that the ability to predict action consequences based on perception and memory is essential for robots to demonstrate intelligent behaviors in unstructured environments. However, traditional approaches generally represent action and perception separately---as computer vision modules that recognize objects and as planners that execute actions based on labels and poses. I propose here a more integrated approach where action and perception are combined in a memory model, in which a sequence of actions can be planned based on …


Belief-Space Planning For Resourceful Manipulation And Mobility, Dirk Ruiken Jul 2017

Belief-Space Planning For Resourceful Manipulation And Mobility, Dirk Ruiken

Doctoral Dissertations

Robots are increasingly expected to work in partially observable and unstructured environments. They need to select actions that exploit perceptual and motor resourcefulness to manage uncertainty based on the demands of the task and environment. The research in this dissertation makes two primary contributions. First, it develops a new concept in resourceful robot platforms called the UMass uBot and introduces the sixth and seventh in the uBot series. uBot-6 introduces multiple postural configurations that enable different modes of mobility and manipulation to meet the needs of a wide variety of tasks and environmental constraints. uBot-7 extends this with the use …


Learning Parameterized Skills, Bruno Castro Da Silva Mar 2015

Learning Parameterized Skills, Bruno Castro Da Silva

Doctoral Dissertations

One of the defining characteristics of human intelligence is the ability to acquire and refine skills. Skills are behaviors for solving problems that an agent encounters often—sometimes in different contexts and situations—throughout its lifetime. Identifying important problems that recur and retaining their solutions as skills allows agents to more rapidly solve novel problems by adjusting and combining their existing skills. In this thesis we introduce a general framework for learning reusable parameterized skills. Reusable skills are parameterized procedures that—given a description of a problem to be solved—produce appropriate behaviors or policies. They can be sequentially and hierarchically combined with other …


Semantically Grounded Learning From Unstructured Demonstrations, Scott D. Niekum Sep 2013

Semantically Grounded Learning From Unstructured Demonstrations, Scott D. Niekum

Open Access Dissertations

Robots exhibit flexible behavior largely in proportion to their degree of semantic knowledge about the world. Such knowledge is often meticulously hand-coded for a narrow class of tasks, limiting the scope of possible robot competencies. Thus, the primary limiting factor of robot capabilities is often not the physical attributes of the robot, but the limited time and skill of expert programmers. One way to deal with the vast number of situations and environments that robots face outside the laboratory is to provide users with simple methods for programming robots that do not require the skill of an expert.

For this …