Open Access. Powered by Scholars. Published by Universities.®

Robotics Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

2017

Institution
Keyword
Publication
Publication Type

Articles 1 - 15 of 15

Full-Text Articles in Robotics

An Unmanned Aerial System For Prescribed Fires, Evan M. Beachly Dec 2017

An Unmanned Aerial System For Prescribed Fires, Evan M. Beachly

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

Prescribed fires can lessen wildfire severity and control invasive species, but some terrains may be difficult, dangerous, or costly to burn with existing tools. This thesis presents the design of an unmanned aerial system that can ignite prescribed fires from the air, with less cost and risk than with aerial ignition from a manned aircraft. The prototype was evaluated in-lab and successfully used to ignite interior areas of two prescribed fires. Additionally, we introduce an approach that integrates a lightweight fire simulation to autonomously plan safe flight trajectories and suggest effective fire lines. Both components are unique in that they …


Adaft: A Resource-Efficient Framework For Adaptive Fault-Tolerance In Cyber-Physical Systems, Ye Xu Nov 2017

Adaft: A Resource-Efficient Framework For Adaptive Fault-Tolerance In Cyber-Physical Systems, Ye Xu

Doctoral Dissertations

Cyber-physical systems frequently have to use massive redundancy to meet application requirements for high reliability. While such redundancy is required, it can be activated adaptively, based on the current state of the controlled plant. Most of the time the physical plant is in a state that allows for a lower level of fault-tolerance. Avoiding the continuous deployment of massive fault-tolerance will greatly reduce the workload of CPSs. In this dissertation, we demonstrate a software simulation framework (AdaFT) that can automatically generate the sub-spaces within which our adaptive fault-tolerance can be applied. We also show the theoretical benefits of AdaFT, and …


Formal Performance Guarantees For An Approach To Human In The Loop Robot Missions, Damian Lyons, Ron Arkin, Shu Jiang, Matt O'Brien, Feng Tang, Peng Tang Oct 2017

Formal Performance Guarantees For An Approach To Human In The Loop Robot Missions, Damian Lyons, Ron Arkin, Shu Jiang, Matt O'Brien, Feng Tang, Peng Tang

Faculty Publications

Abstract— A key challenge in the automatic verification of robot mission software, especially critical mission software, is to be able to effectively model the performance of a human operator and factor that into the formal performance guarantees for the mission. We present a novel approach to modelling the skill level of the operator and integrating it into automatic verification using a linear Gaussians model parameterized by experimental calibration. Our approach allows us to model different skill levels directly in terms of the behavior of the lumped, robot plus operator, system.

Using MissionLab and VIPARS (a behavior-based robot mission verification …


Developing Grounded Goals Through Instant Replay Learning, Lisa Meeden, Douglas S. Blank Sep 2017

Developing Grounded Goals Through Instant Replay Learning, Lisa Meeden, Douglas S. Blank

Computer Science Faculty Research and Scholarship

This paper describes and tests a developmental architecture that enables a robot to explore its world, to find and remember interesting states, to associate these states with grounded goal representations, and to generate action sequences so that it can re-visit these states of interest. The model is composed of feed-forward neural networks that learn to make predictions at two levels through a dual mechanism of motor babbling for discovering the interesting goal states and instant replay learning for developing the grounded goal representations. We compare the performance of the model with grounded goal representations versus random goal representations, and find …


Effects Of Anthropomorphism On Trust In Human-Robot Interaction, Keith R. Macarthur, William T. Shugars, Tracy L. Sanders, Peter A. Hancock Aug 2017

Effects Of Anthropomorphism On Trust In Human-Robot Interaction, Keith R. Macarthur, William T. Shugars, Tracy L. Sanders, Peter A. Hancock

Keith Reid MacArthur

Robots are being integrated into everyday use, making the evaluation of trust in human-robot interactions (HRI) important to ensure their acceptance and correct usage (Lee & See, 2004; Parasuraman & Riley, 1997). Goetz, Kiesler, and Powers (2003) found that participants preferred robots with an anthropomorphic appearance appropriate for the social context of the task. This preference for robots with human-like appearance may be indicative of increased levels of trust and therefore, the present research evaluates the effects of anthropomorphism on trust.
Eighteen participants (Mage = 34.22, SDage = 10.55, n = 8 male, n =10 female) with …


Belief-Space Planning For Resourceful Manipulation And Mobility, Dirk Ruiken Jul 2017

Belief-Space Planning For Resourceful Manipulation And Mobility, Dirk Ruiken

Doctoral Dissertations

Robots are increasingly expected to work in partially observable and unstructured environments. They need to select actions that exploit perceptual and motor resourcefulness to manage uncertainty based on the demands of the task and environment. The research in this dissertation makes two primary contributions. First, it develops a new concept in resourceful robot platforms called the UMass uBot and introduces the sixth and seventh in the uBot series. uBot-6 introduces multiple postural configurations that enable different modes of mobility and manipulation to meet the needs of a wide variety of tasks and environmental constraints. uBot-7 extends this with the use …


Motion Planning For Simple Two-Wheeled Robots, Ronald I. Greenberg, Jeffery M. Karp Jul 2017

Motion Planning For Simple Two-Wheeled Robots, Ronald I. Greenberg, Jeffery M. Karp

Computer Science: Faculty Publications and Other Works

This paper considers various simple ways of navigating in a 2-dimensianal territory with a two-wheeled robot of a type typical in educational robotics. We determine shortest paths under various modes of operation and compare.


A Robotics Framework For Simulation And Control Of A Robotic Arm For Use In Higher Education, Craig Christensen May 2017

A Robotics Framework For Simulation And Control Of A Robotic Arm For Use In Higher Education, Craig Christensen

MS in Computer Science Project Reports

Robotic arms have been in common use for a several decades now in many areas from manufacturing and industrial uses to hobby projects and amusement park rides. However, there have been very few attempts to make an inexpensive robot arm with a software stack for use in higher education. This paper will outline a control and interfacing software stack built on the Robot Operating System (ROS) and a simulation of the 5 degree of freedom (DoF) robotic arm.


Target Detection With Neural Network Hardware, Hollis Bui, Garrett Massman, Nikolas Spangler, Jalen Tarvin, Luke Bechtel, Kevin Dunn, Shawn Bradford May 2017

Target Detection With Neural Network Hardware, Hollis Bui, Garrett Massman, Nikolas Spangler, Jalen Tarvin, Luke Bechtel, Kevin Dunn, Shawn Bradford

Chancellor’s Honors Program Projects

No abstract provided.


An Approach To Robust Homing With Stereovision, Fuqiang Fu, Damian Lyons Apr 2017

An Approach To Robust Homing With Stereovision, Fuqiang Fu, Damian Lyons

Faculty Publications

Visual Homing is a bioinspired approach to robot navigation which can be fast and uses few assumptions. However, visual homing in a cluttered and unstructured outdoor environment offers several challenges to homing methods that have been developed for primarily indoor environments. One issue is that any current image during homing may be tilted with respect to the home image. The second is that moving through a cluttered scene during homing may cause obstacles to interfere between the home scene and location and the current scene and location. In this paper, we introduce a robust method to improve a previous developed …


Pythagorean Approximations For Lego: Merging Educational Robot Construction With Programming And Data Analysis, Ronald I. Greenberg Apr 2017

Pythagorean Approximations For Lego: Merging Educational Robot Construction With Programming And Data Analysis, Ronald I. Greenberg

Computer Science: Faculty Publications and Other Works

Abstract. This paper can be used in two ways. It can provide reference information for incorporating diagonal elements (for bracing or gear meshing) in educational robots built from standard LEGO kits. Alternatively, it can be used as the basis for an assignment for high school or college students to recreate this information; in the process, students will exercise skills in both computer programming and data analysis. Using the paper in the second way can be an excellent integrative experience to add to an existing course; for example, the Exploring Computer Science high school curriculum concludes with the units “Introduction to …


Performance Verification For Robot Missions In Uncertain Environments, Damian Lyons, Ron Arkin, Shu Jiang, Matt O'Brien, Feng Tang, Peng Tang Jan 2017

Performance Verification For Robot Missions In Uncertain Environments, Damian Lyons, Ron Arkin, Shu Jiang, Matt O'Brien, Feng Tang, Peng Tang

Faculty Publications

Abstract—Certain robot missions need to perform predictably in a physical environment that may have significant uncertainty. One approach is to leverage automatic software verification techniques to establish a performance guarantee. The addition of an environment model and uncertainty in both program and environment, however, means the state-space of a model-checking solution to the problem can be prohibitively large. An approach based on behavior-based controllers in a process-algebra framework that avoids state-space combinatorics is presented here. In this approach, verification of the robot program in the uncertain environment is reduced to a filtering problem for a Bayesian Network. Validation results …


Establishing A-Priori Performance Guarantees For Robot Missions That Include Localization Software, Damian Lyons, Ron Arkin, Shu Jiang, Matt O'Brien, Feng Tang, Peng Tang Jan 2017

Establishing A-Priori Performance Guarantees For Robot Missions That Include Localization Software, Damian Lyons, Ron Arkin, Shu Jiang, Matt O'Brien, Feng Tang, Peng Tang

Faculty Publications

One approach to determining whether an automated system is performing correctly is to monitor its performance, signaling when the performance is not acceptable; another approach is to automatically analyze the possible behaviors of the system a-priori and determine performance guarantees. Thea authors have applied this second approach to automatically derive performance guarantees for behaviorbased, multi-robot critical mission software using an innovative approach to formal verification for robotic software. Localization and mapping algorithms can allow a robot to navigate well in an unknown environment. However, whether such algorithms enhance any specific robot mission is currently a matter for empirical validation. Several …


Evaluating Intention To Use Remote Robotics Experimentation In Programming Courses, Pericles Leng Cheng Jan 2017

Evaluating Intention To Use Remote Robotics Experimentation In Programming Courses, Pericles Leng Cheng

Walden Dissertations and Doctoral Studies

The Digital Agenda for Europe (2015) states that there will be 825,000 unfilled vacancies for Information and Communications Technology by 2020. This lack of IT professionals stems from the small number of students graduating in computer science. To retain more students in the field, teachers can use remote robotic experiments to explain difficult concepts. This correlational study used the unified theory of acceptance and use of technology (UTAUT) to examine if performance expectancy, effort expectancy, social influence, and facilitating conditions can predict the intention of high school computer science teachers in Cyprus, to use remote robotic experiments in their classes. …


2d Vector Map And Database Design For Indoor Assisted Navigation, Luciano Caraciolo Albuquerque Jan 2017

2d Vector Map And Database Design For Indoor Assisted Navigation, Luciano Caraciolo Albuquerque

Dissertations and Theses

In this paper we implemented a 2D Vector Map, map editor and Database design intended to provide an efficient way to convert cad files from indoor environments to a set of vectors representing hallways, doors, exits, elevators, and other entities embedded in a floor plan, and save them in a database for use by other applications, such as assisted navigation for blind people.

A graphical application as developed in C++ to allow the user to input a CAD DXF file, process the file to automatically obtain nodes and edges, and save the nodes and edges to a database for posterior …