Open Access. Powered by Scholars. Published by Universities.®

Robotics Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

Series

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 57

Full-Text Articles in Robotics

Examining The Externalities Of Highway Capacity Expansions In California: An Analysis Of Land Use And Land Cover (Lulc) Using Remote Sensing Technology, Serena E. Alexander, Bo Yang, Owen Hussey, Derek Hicks Nov 2023

Examining The Externalities Of Highway Capacity Expansions In California: An Analysis Of Land Use And Land Cover (Lulc) Using Remote Sensing Technology, Serena E. Alexander, Bo Yang, Owen Hussey, Derek Hicks

Mineta Transportation Institute Publications

There are over 590,000 bridges dispersed across the roadway network that stretches across the United States alone. Each bridge with a length of 20 feet or greater must be inspected at least once every 24 months, according to the Federal Highway Act (FHWA) of 1968. This research developed an artificial intelligence (AI)-based framework for bridge and road inspection using drones with multiple sensors collecting capabilities. It is not sufficient to conduct inspections of bridges and roads using cameras alone, so the research team utilized an infrared (IR) camera along with a high-resolution optical camera. In many instances, the IR camera …


Objectfusion: Multi-Modal 3d Object Detection With Object-Centric Fusion, Q. Cai, Y. Pan, T. Yao, Chong-Wah Ngo, T. Mei Oct 2023

Objectfusion: Multi-Modal 3d Object Detection With Object-Centric Fusion, Q. Cai, Y. Pan, T. Yao, Chong-Wah Ngo, T. Mei

Research Collection School Of Computing and Information Systems

Recent progress on multi-modal 3D object detection has featured BEV (Bird-Eye-View) based fusion, which effectively unifies both LiDAR point clouds and camera images in a shared BEV space. Nevertheless, it is not trivial to perform camera-to-BEV transformation due to the inherently ambiguous depth estimation of each pixel, resulting in spatial misalignment between these two multi-modal features. Moreover, such transformation also inevitably leads to projection distortion of camera image features in BEV space. In this paper, we propose a novel Object-centric Fusion (ObjectFusion) paradigm, which completely gets rid of camera-to-BEV transformation during fusion to align object-centric features across different modalities for …


Chatgpt As Metamorphosis Designer For The Future Of Artificial Intelligence (Ai): A Conceptual Investigation, Amarjit Kumar Singh (Library Assistant), Dr. Pankaj Mathur (Deputy Librarian) Mar 2023

Chatgpt As Metamorphosis Designer For The Future Of Artificial Intelligence (Ai): A Conceptual Investigation, Amarjit Kumar Singh (Library Assistant), Dr. Pankaj Mathur (Deputy Librarian)

Library Philosophy and Practice (e-journal)

Abstract

Purpose: The purpose of this research paper is to explore ChatGPT’s potential as an innovative designer tool for the future development of artificial intelligence. Specifically, this conceptual investigation aims to analyze ChatGPT’s capabilities as a tool for designing and developing near about human intelligent systems for futuristic used and developed in the field of Artificial Intelligence (AI). Also with the helps of this paper, researchers are analyzed the strengths and weaknesses of ChatGPT as a tool, and identify possible areas for improvement in its development and implementation. This investigation focused on the various features and functions of ChatGPT that …


Drone Detection Using Yolov5, Burchan Aydin, Subroto Singha Feb 2023

Drone Detection Using Yolov5, Burchan Aydin, Subroto Singha

Faculty Publications

The rapidly increasing number of drones in the national airspace, including those for recreational and commercial applications, has raised concerns regarding misuse. Autonomous drone detection systems offer a probable solution to overcoming the issue of potential drone misuse, such as drug smuggling, violating people’s privacy, etc. Detecting drones can be difficult, due to similar objects in the sky, such as airplanes and birds. In addition, automated drone detection systems need to be trained with ample amounts of data to provide high accuracy. Real-time detection is also necessary, but this requires highly configured devices such as a graphical processing unit (GPU). …


A Structured Narrative Prompt For Prompting Narratives From Large Language Models: Sentiment Assessment Of Chatgpt-Generated Narratives And Real Tweets, Christopher J. Lynch, Erik J. Jensen, Virginia Zamponi, Kevin O'Brien, Erika Frydenlund, Ross Gore Jan 2023

A Structured Narrative Prompt For Prompting Narratives From Large Language Models: Sentiment Assessment Of Chatgpt-Generated Narratives And Real Tweets, Christopher J. Lynch, Erik J. Jensen, Virginia Zamponi, Kevin O'Brien, Erika Frydenlund, Ross Gore

VMASC Publications

Large language models (LLMs) excel in providing natural language responses that sound authoritative, reflect knowledge of the context area, and can present from a range of varied perspectives. Agent-based models and simulations consist of simulated agents that interact within a simulated environment to explore societal, social, and ethical, among other, problems. Simulated agents generate large volumes of data and discerning useful and relevant content is an onerous task. LLMs can help in communicating agents' perspectives on key life events by providing natural language narratives. However, these narratives should be factual, transparent, and reproducible. Therefore, we present a structured narrative prompt …


Finding Approximate Pythagorean Triples (And Applications To Lego Robot Building), Ronald I. Greenberg, Matthew Fahrenbacher, George K. Thiruvathukal Jul 2022

Finding Approximate Pythagorean Triples (And Applications To Lego Robot Building), Ronald I. Greenberg, Matthew Fahrenbacher, George K. Thiruvathukal

Computer Science: Faculty Publications and Other Works

This assignment combines programming and data analysis to determine good combinations of side lengths that approximately satisfy the Pythagorean Theorem for right triangles. This can be a standalone exercise using a wide variety of programming languages, but the results are useful for determining good ways to assemble LEGO pieces in robot construction, so the exercise can serve to integrate three different units of the Exploring Computer Science high school curriculum: "Programming", "Computing and Data Analysis", and "Robotics". Sample assignment handouts are provided for both Scratch and Java programmers. Ideas for several variants of the assignment are also provided.


A Monte Carlo Framework For Incremental Improvement Of Simulation Fidelity, Damian Lyons, James Finocchiaro, Misha Novitsky, Chris Korpela Jul 2022

A Monte Carlo Framework For Incremental Improvement Of Simulation Fidelity, Damian Lyons, James Finocchiaro, Misha Novitsky, Chris Korpela

Faculty Publications

Robot software developed in simulation often does not be- have as expected when deployed because the simulation does not sufficiently represent reality - this is sometimes called the `reality gap' problem. We propose a novel algorithm to address the reality gap by injecting real-world experience into the simulation. It is assumed that the robot program (control policy) is developed using simulation, but subsequently deployed on a real system, and that the program includes a performance objective monitor procedure with scalar output. The proposed approach collects simulation and real world observations and builds conditional probability functions. These are used to generate …


Visual Homing For Robot Teams: Do You See What I See?, Damian Lyons, Noah Petzinger Apr 2022

Visual Homing For Robot Teams: Do You See What I See?, Damian Lyons, Noah Petzinger

Faculty Publications

Visual homing is a lightweight approach to visual navigation which does not require GPS. It is very attractive for robot platforms with a low computational capacity. However, a limitation is that the stored home location must be initially within the field of view of the robot. Motivated by the increasing ubiquity of camera information we propose to address this line-of-sight limitation by leveraging camera information from other robots and fixed cameras. To home to a location that is not initially within view, a robot must be able to identify a common visual landmark with another robot that can be used …


Administrative Law In The Automated State, Cary Coglianese Jan 2021

Administrative Law In The Automated State, Cary Coglianese

All Faculty Scholarship

In the future, administrative agencies will rely increasingly on digital automation powered by machine learning algorithms. Can U.S. administrative law accommodate such a future? Not only might a highly automated state readily meet longstanding administrative law principles, but the responsible use of machine learning algorithms might perform even better than the status quo in terms of fulfilling administrative law’s core values of expert decision-making and democratic accountability. Algorithmic governance clearly promises more accurate, data-driven decisions. Moreover, due to their mathematical properties, algorithms might well prove to be more faithful agents of democratic institutions. Yet even if an automated state were …


Extending The Functional Subnetwork Approach To A Generalized Linear Integrate-And-Fire Neuron Model, Nicholas Szczecinski, Roger Quinn, Alexander J. Hunt Nov 2020

Extending The Functional Subnetwork Approach To A Generalized Linear Integrate-And-Fire Neuron Model, Nicholas Szczecinski, Roger Quinn, Alexander J. Hunt

Mechanical and Materials Engineering Faculty Publications and Presentations

Engineering neural networks to perform specific tasks often represents a monumental challenge in determining network architecture and parameter values. In this work, we extend our previously-developed method for tuning networks of non-spiking neurons, the “Functional subnetwork approach” (FSA), to the tuning of networks composed of spiking neurons. This extension enables the direct assembly and tuning of networks of spiking neurons and synapses based on the network’s intended function, without the use of global optimization ormachine learning. To extend the FSA, we show that the dynamics of a generalized linear integrate and fire (GLIF) neuronmodel have fundamental similarities to those of …


Finite-Time State Estimation For An Inverted Pendulum Under Input-Multiplicative Uncertainty, Sergey V. Drakunov, William Mackunis, Anu Kossery Jayaprakash, Krishna Bhavithavya Kidambi, Mahmut Reyhanoglu Oct 2020

Finite-Time State Estimation For An Inverted Pendulum Under Input-Multiplicative Uncertainty, Sergey V. Drakunov, William Mackunis, Anu Kossery Jayaprakash, Krishna Bhavithavya Kidambi, Mahmut Reyhanoglu

Publications

A sliding mode observer is presented, which is rigorously proven to achieve finite-time state estimation of a dual-parallel underactuated (i.e., single-input multi-output) cart inverted pendulum system in the presence of parametric uncertainty. A salient feature of the proposed sliding mode observer design is that a rigorous analysis is provided, which proves finite-time estimation of the complete system state in the presence of input-multiplicative parametric uncertainty. The performance of the proposed observer design is demonstrated through numerical case studies using both sliding mode control (SMC)- and linear quadratic regulator (LQR)-based closed-loop control systems. The main contribution presented here is the rigorous …


Using Taint Analysis And Reinforcement Learning (Tarl) To Repair Autonomous Robot Software, Damian Lyons, Saba Zahra May 2020

Using Taint Analysis And Reinforcement Learning (Tarl) To Repair Autonomous Robot Software, Damian Lyons, Saba Zahra

Faculty Publications

It is important to be able to establish formal performance bounds for autonomous systems. However, formal verification techniques require a model of the environment in which the system operates; a challenge for autonomous systems, especially those expected to operate over longer timescales. This paper describes work in progress to automate the monitor and repair of ROS-based autonomous robot software written for an a-priori partially known and possibly incorrect environment model. A taint analysis method is used to automatically extract the data-flow sequence from input topic to publish topic, and instrument that code. A unique reinforcement learning approximation of MDP utility …


A New Ectotherm 3d Tracking And Behavior Analytics System Using A Depth-Based Approach With Color Validation, With Preliminary Data On Kihansi Spray Toad (Nectophrynoides Asperginis) Activity, Philip Bal, Damian Lyons, Avishai Shuter Mar 2020

A New Ectotherm 3d Tracking And Behavior Analytics System Using A Depth-Based Approach With Color Validation, With Preliminary Data On Kihansi Spray Toad (Nectophrynoides Asperginis) Activity, Philip Bal, Damian Lyons, Avishai Shuter

Faculty Publications

The Kihansi spray toad (Nectophrynoides asperginis), classified as Extinct in the Wild by the IUCN, is being bred at the Wildlife Conservation Society’s (WCS) Bronx Zoo as part of an effort to successfully reintroduce the species into the wild. Thousands of toads live at the Bronx Zoo presenting an opportunity to learn more about their behaviors for the first time, at scale. It is impractical to perform manual observations for long periods of time. This paper reports on the development of a RGB-D tracking and analytics approach that allows researchers to accurately and efficiently gather information about the toads’ behavior. …


A Monte Carlo Approach To Closing The Reality Gap, Damian Lyons, James Finocchiaro, Michael Novitzky, Christopher Korpela Feb 2020

A Monte Carlo Approach To Closing The Reality Gap, Damian Lyons, James Finocchiaro, Michael Novitzky, Christopher Korpela

Faculty Publications

We propose a novel approach to the ’reality gap’ problem, i.e., modifying a robot simulation so that its performance becomes more similar to observed real world phenomena. This problem arises whether the simulation is being used by human designers or in an automated policy development mechanism. We expect that the program/policy is developed using simulation, and subsequently deployed on a real system. We further assume that the program includes a monitor procedure with scalar output to determine when it is achieving its performance objectives. The proposed approach collects simulation and real world observations and builds conditional probability functions. These are …


Comparison Of Object Detection And Patch-Based Classification Deep Learning Models On Mid- To Late-Season Weed Detection In Uav Imagery, Arun Narenthiran Veeranampalayam Sivakumar, Jiating Li, Stephen Scott, Eric T. Psota, Amit J. Jhala, Joe D. Luck, Yeyin Shi Jan 2020

Comparison Of Object Detection And Patch-Based Classification Deep Learning Models On Mid- To Late-Season Weed Detection In Uav Imagery, Arun Narenthiran Veeranampalayam Sivakumar, Jiating Li, Stephen Scott, Eric T. Psota, Amit J. Jhala, Joe D. Luck, Yeyin Shi

Biological Systems Engineering: Papers and Publications

Mid- to late-season weeds that escape from the routine early-season weed management threaten agricultural production by creating a large number of seeds for several future growing seasons. Rapid and accurate detection of weed patches in field is the first step of site-specific weed management. In this study, object detection-based convolutional neural network models were trained and evaluated over low-altitude unmanned aerial vehicle (UAV) imagery for mid- to late-season weed detection in soybean fields. The performance of two object detection models, Faster RCNN and the Single Shot Detector (SSD), were evaluated and compared in terms of weed detection performance using mean …


Robot Simulation Analysis, Jacob Miller, Jeremy Evert Nov 2019

Robot Simulation Analysis, Jacob Miller, Jeremy Evert

Student Research

• Simulate virtual robot for test and analysis

• Analyze SLAM solutions using ROS

• Assemble a functional Turtlebot

• Emphasize projects related to current research trajectories for NASA, and general robotics applications


A Co-Optimal Coverage Path Planning Method For Aerial Scanning Of Complex Structures, Zhexiong Shang, Justin Bradley, Zhigang Shen Nov 2019

A Co-Optimal Coverage Path Planning Method For Aerial Scanning Of Complex Structures, Zhexiong Shang, Justin Bradley, Zhigang Shen

Department of Construction Engineering and Management: Faculty Publications

The utilization of unmanned aerial vehicles (UAVs) in survey and inspection of civil infrastructure has been growing rapidly. However, computationally efficient solvers that find optimal flight paths while ensuring high-quality data acquisition of the complete 3D structure remains a difficult problem. Existing solvers typically prioritize efficient flight paths, or coverage, or reducing computational complexity of the algorithm – but these objectives are not co-optimized holistically. In this work we introduce a co-optimal coverage path planning (CCPP) method that simultaneously co-optimizes the UAV path, the quality of the captured images, and reducing computational complexity of the solver all while adhering to …


Exercises Integrating High School Mathematics With Robot Motion Planning, Ronald I. Greenberg, George K. Thiruvathukal Oct 2019

Exercises Integrating High School Mathematics With Robot Motion Planning, Ronald I. Greenberg, George K. Thiruvathukal

Computer Science: Faculty Publications and Other Works

This paper presents progress in developing exercises for high school students incorporating level-appropriate mathematics into robotics activities. We assume mathematical foundations ranging from algebra to precalculus, whereas most prior work on integrating mathematics into robotics uses only very elementary mathematical reasoning or, at the other extreme, is comprised of technical papers or books using calculus and other advanced mathematics. The exercises suggested are relevant to any differerential-drive robot, which is an appropriate model for many different varieties of educational robots. They guide students towards comparing a variety of natural navigational strategies making use of typical movement primitives. The exercises align …


A Low-Cost Soft Robotic Hand Exoskeleton For Use In Therapy Of Limited Hand–Motor Function, Grant Rudd, Liam Daly, Vukica Jovanovic, Filip Cukov Sep 2019

A Low-Cost Soft Robotic Hand Exoskeleton For Use In Therapy Of Limited Hand–Motor Function, Grant Rudd, Liam Daly, Vukica Jovanovic, Filip Cukov

Engineering Technology Faculty Publications

We present the design and validation of a low-cost, customizable and 3D-printed anthropomorphic soft robotic hand exoskeleton for rehabilitation of hand injuries using remotely administered physical therapy regimens. The design builds upon previous work done on cable actuated exoskeleton designs by implementing the same kinematic functionality, but with the focus shifted to ease of assembly and cost effectiveness as to allow patients and physicians to manufacture and assemble the hardware necessary to implement treatment. The exoskeleton was constructed solely from 3D-printed and widely available of-the-shelf components. Control of the actuators was realized using an Arduino microcontroller, with a custom-designed shield …


Dimensional Analysis Of Robot Software Without Developer Annotations, John-Paul W. Ore Jul 2019

Dimensional Analysis Of Robot Software Without Developer Annotations, John-Paul W. Ore

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

Robot software risks the hazard of dimensional inconsistencies. These inconsistencies occur when a program incorrectly manipulates values representing real-world quantities. Incorrect manipulation has real-world consequences that range in severity from benign to catastrophic. Previous approaches detect dimensional inconsistencies in programs but require extra developer effort and technical complications. The extra effort involves developers creating type annotations for every variable representing a real-world quantity that has physical units, and the technical complications include toolchain burdens like specialized compilers or type libraries.

To overcome the limitations of previous approaches, this thesis presents novel methods to detect dimensional inconsistencies without developer annotations. We …


Mathematics And Programming Exercises For Educational Robot Navigation, Ronald I. Greenberg Jul 2019

Mathematics And Programming Exercises For Educational Robot Navigation, Ronald I. Greenberg

Computer Science: Faculty Publications and Other Works

This paper points students towards ideas they can use towards developing a convenient library for robot navigation, with examples based on Botball primitives, and points educators towards mathematics and programming exercises they can suggest to students, especially advanced high school students.


Improving 3d Printed Prosthetics With Sensors And Motors, Rachel Zarin Jul 2019

Improving 3d Printed Prosthetics With Sensors And Motors, Rachel Zarin

Honors Projects

A 3D printed hand and arm prosthetic was created from the idea of adding bionic elements while keeping the cost low. It was designed based on existing models, desired functions, and materials available. A tilt sensor keeps the hand level, two motors move the wrist in two different directions, a limit switch signals the fingers to open and close, and another motor helps open and close the fingers. All sensors and motors were built on a circuit board, programmed using an Arduino, and powered by a battery. Other supporting materials include metal brackets, screws, guitar strings, elastic bands, small clamps, …


Chatbots: Conversation Killers Or Makers?, Jing Jiang Jul 2019

Chatbots: Conversation Killers Or Makers?, Jing Jiang

MITB Thought Leadership Series

Whether you’re aware of it or not, the chances are you’ve been chatting to robots of late. While these bots are faceless and unseen, don’t be fooled into thinking they aren’t there. In fact, chatbots, have been around since the 1960s at least, but with the progress in artificial intelligence, cloud computing and voice recognition, they’ve received both a functionality and a popularity boost. From the cosmetic to the life-changing, nowadays, chatbots can do anything from helping a person lose weight to assisting refugees applying for asylum.


The Future Robo-Advisor, Catalin Burlacu May 2019

The Future Robo-Advisor, Catalin Burlacu

MITB Thought Leadership Series

The accelerated digitalisation of both people and business around the world today is having a huge impact on the investment management and advisory space. The addition of new and vastly larger data sets, as well as exponentially more sophisticated analytical tools to turn that data into usable information is constantly changing the way investments are decided on, made and managed.


A Generative Human-Robot Motion Retargeting Approach Using A Single Rgbd Sensor, Sen Wang, Xinxin Zuo, Runxiao Wang, Ruigang Yang Apr 2019

A Generative Human-Robot Motion Retargeting Approach Using A Single Rgbd Sensor, Sen Wang, Xinxin Zuo, Runxiao Wang, Ruigang Yang

Computer Science Faculty Publications

The goal of human-robot motion retargeting is to let a robot follow the movements performed by a human subject. Typically in previous approaches, the human poses are precomputed from a human pose tracking system, after which the explicit joint mapping strategies are specified to apply the estimated poses to a target robot. However, there is not any generic mapping strategy that we can use to map the human joint to robots with different kinds of configurations. In this paper, we present a novel motion retargeting approach that combines the human pose estimation and the motion retargeting procedure in a unified …


Integrating Mathematics And Educational Robotics: Simple Motion Planning, Ronald I. Greenberg, George K. Thiruvathukal, Sara T. Greenberg Apr 2019

Integrating Mathematics And Educational Robotics: Simple Motion Planning, Ronald I. Greenberg, George K. Thiruvathukal, Sara T. Greenberg

Computer Science: Faculty Publications and Other Works

This paper shows how students can be guided to integrate elementary mathematical analyses with motion planning for typical educational robots. Rather than using calculus as in comprehensive works on motion planning, we show students can achieve interesting results using just simple linear regression tools and trigonometric analyses. Experiments with one robotics platform show that use of these tools can lead to passable navigation through dead reckoning even if students have limited experience with use of sensors, programming, and mathematics.


Effective Plant Discrimination Based On The Combination Of Local Binary Pattern Operators And Multiclass Support Vector Machine Methods, Vi N T Le, Beniamin Apopei, Kamal Alameh Jan 2019

Effective Plant Discrimination Based On The Combination Of Local Binary Pattern Operators And Multiclass Support Vector Machine Methods, Vi N T Le, Beniamin Apopei, Kamal Alameh

Research outputs 2014 to 2021

Accurate crop and weed discrimination plays a critical role in addressing the challenges of weed management in agriculture. The use of herbicides is currently the most common approach to weed control. However, herbicide resistant plants have long been recognised as a major concern due to the excessive use of herbicides. Effective weed detection techniques can reduce the cost of weed management and improve crop quality and yield. A computationally efficient and robust plant classification algorithm is developed and applied to the classification of three crops: Brassica napus (canola), Zea mays (maize/corn), and radish. The developed algorithm is based on the …


Multi-Robot Coordination And Scheduling For Deactivation & Decommissioning, Sebastian A. Zanlongo Nov 2018

Multi-Robot Coordination And Scheduling For Deactivation & Decommissioning, Sebastian A. Zanlongo

FIU Electronic Theses and Dissertations

Large quantities of high-level radioactive waste were generated during WWII. This waste is being stored in facilities such as double-shell tanks in Washington, and the Waste Isolation Pilot Plant in New Mexico. Due to the dangerous nature of radioactive waste, these facilities must undergo periodic inspections to ensure that leaks are detected quickly. In this work, we provide a set of methodologies to aid in the monitoring and inspection of these hazardous facilities. This allows inspection of dangerous regions without a human operator, and for the inspection of locations where a person would not be physically able to enter.

First, …


A Dexterous, Glove-Based Teleoperable Low-Power Soft Robotic Arm For Delicate Deep-Sea Biological Exploration, Brennan T. Phillips, Kaitlyn P. Becker, Shunichi Kurumaya, Kevin C. Galloway, Griffin Whittredge, Daniel M. Vogt, Clark B. Teeple, Michelle H. Rosen, Vincent A. Pieribone, David F. Gruber, Robert J. Wood Oct 2018

A Dexterous, Glove-Based Teleoperable Low-Power Soft Robotic Arm For Delicate Deep-Sea Biological Exploration, Brennan T. Phillips, Kaitlyn P. Becker, Shunichi Kurumaya, Kevin C. Galloway, Griffin Whittredge, Daniel M. Vogt, Clark B. Teeple, Michelle H. Rosen, Vincent A. Pieribone, David F. Gruber, Robert J. Wood

Publications and Research

Modern marine biologists seeking to study or interact with deep-sea organisms are confronted with few options beyond industrial robotic arms, claws, and suction samplers. This limits biological interactions to a subset of “rugged” and mostly immotile fauna. As the deep sea is one of the most biologically diverse and least studied ecosystems on the planet, there is much room for innovation in facilitating delicate interactions with a multitude of organisms. The biodiversity and physiology of shallow marine systems, such as coral reefs, are common study targets due to the easier nature of access; SCUBA diving allows for in situ delicate …


Exploring The Effect Of Different Numbers Of Convolutional Filters And Training Loops On The Performance Of Alphazero, Jared Prince Oct 2018

Exploring The Effect Of Different Numbers Of Convolutional Filters And Training Loops On The Performance Of Alphazero, Jared Prince

Masters Theses & Specialist Projects

In this work, the algorithm used by AlphaZero is adapted for dots and boxes, a two-player game. This algorithm is explored using different numbers of convolutional filters and training loops, in order to better understand the effect these parameters have on the learning of the player. Different board sizes are also tested to compare these parameters in relation to game complexity. AlphaZero originated as a Go player using an algorithm which combines Monte Carlo tree search and convolutional neural networks. This novel approach, integrating a reinforcement learning method previously applied to Go (MCTS) with a supervised learning method (neural networks) …