Open Access. Powered by Scholars. Published by Universities.®

Robotics Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

SelectedWorks

Selected Works

Swarm intelligence

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Robotics

Swarm Intelligence, A Blackboard Architecture And Local Decision Making For Spacecraft Command, Jeremy Straub Mar 2015

Swarm Intelligence, A Blackboard Architecture And Local Decision Making For Spacecraft Command, Jeremy Straub

Jeremy Straub

Control of a multi-spacecraft constellation is a topic of significant inquiry, at present. This paper presents and evaluates a command architecture for a multi-spacecraft mission. It combines swarm techniques with a decentralized / local decision making architecture (which uses a set of shared blackboards for coordination) and demonstrates the efficacy of this approach. Under this approach, the Blackboard software architecture is used to facilitate data sharing between craft as part of a resilient hierarchy and the swarm techniques are used to coordinate activity. The paper begins with an overview of prior work on the precursor command technologies and then presents …


Characterization Of Extended And Simplified Intelligent Water Drop (Siwd) Approaches And Their Comparison To The Intelligent Water Drop (Iwd) Approach, Jeremy Straub, Eunjin Kim Nov 2013

Characterization Of Extended And Simplified Intelligent Water Drop (Siwd) Approaches And Their Comparison To The Intelligent Water Drop (Iwd) Approach, Jeremy Straub, Eunjin Kim

Jeremy Straub

This paper presents a simplified approach to performing the Intelligent Water Drops (IWD) process. This approach is designed to be comparatively lightweight while approximating the results of the full IWD process. The Simplified Intelligent Water Drops (SIWD) approach is specifically designed for applications where IWD must be run in a computationally limited environment (such as on a robot, UAV or small spacecraft) or where performance speed must be maximized for time sensitive applications. The SWID approach is described and compared and contracted to the base IWD approach.