Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Robotics

2023

Discipline
Institution
Publication
Publication Type

Articles 1 - 16 of 16

Full-Text Articles in Computer Engineering

Brunet: Disruption-Tolerant Tcp And Decentralized Wi-Fi For Small Systems Of Vehicles, Nicholas Brunet Dec 2023

Brunet: Disruption-Tolerant Tcp And Decentralized Wi-Fi For Small Systems Of Vehicles, Nicholas Brunet

Master's Theses

Reliable wireless communication is essential for small systems of vehicles. However, for small-scale robotics projects where communication is not the primary goal, programmers frequently choose to use TCP with Wi-Fi because of their familiarity with the sockets API and the widespread availability of Wi-Fi hardware. However, neither of these technologies are suitable in their default configurations for highly mobile vehicles that experience frequent, extended disruptions. BRUNET (BRUNET Really Useful NETwork) provides a two-tier software solution that enhances the communication capabilities for Linux-based systems. An ad-hoc Wi-Fi network permits decentralized peer-to-peer and multi-hop connectivity without the need for dedicated network infrastructure. …


Exploring Cognition And Affect During Human-Cobot Interaction, Angelika T. Canete, Javier Gonzalez-Sanchez, Rafael Guerra Silva Oct 2023

Exploring Cognition And Affect During Human-Cobot Interaction, Angelika T. Canete, Javier Gonzalez-Sanchez, Rafael Guerra Silva

College of Engineering Summer Undergraduate Research Program

Collaborative robots (Cobots) have recently gained popularity due to their capability to work collaboratively with human operators. This collaborative relationship has been named under the robotics discipline of Human-Robot Collaboration (HRC), in which humans and robots work together to accomplish a common task while also being in the same physical space. An important part of collaboration is the human's decision-making, which is largely affected by their affective and cognitive state. A cobot lacks this fundamental understanding of the human operator. In this research, we utilize a server-client program to communicate the affective states of a human user to a Raspberry …


Autonomous Shipwreck Detection & Mapping, William Ard Aug 2023

Autonomous Shipwreck Detection & Mapping, William Ard

LSU Master's Theses

This thesis presents the development and testing of Bruce, a low-cost hybrid Remote Operated Vehicle (ROV) / Autonomous Underwater Vehicle (AUV) system for the optical survey of marine archaeological sites, as well as a novel sonar image augmentation strategy for semantic segmentation of shipwrecks. This approach takes side-scan sonar and bathymetry data collected using an EdgeTech 2205 AUV sensor integrated with an Harris Iver3, and generates augmented image data to be used for the semantic segmentation of shipwrecks. It is shown that, due to the feature enhancement capabilities of the proposed shipwreck detection strategy, correctly identified areas have a 15% …


Underwater Robot Path Planning In An Intermittent Communication System, Hunter Gallant Jun 2023

Underwater Robot Path Planning In An Intermittent Communication System, Hunter Gallant

Dartmouth College Master’s Theses

Sunflower, a novel cross-medium localization system between an aerial drone and an underwater robot, has not yet been implemented in a multi-robot exploration system. This project’s aim was to simulate various configurations of multi-robot systems, and to create an algorithm, called AdjustPath, to improve exploration and avoid inter- robot collisions. With three, five, seven, and ten simulated underwater robots, there was significant improvement when the AdjustPath algorithm was used. Knowing this, future hardware using the Sunflower system could use this proposed algorithm to increase efficiency and avoid more collisions.


Implementation Of Static Rfid Landmarks In Slam For Planogram Compliance, Brennan L. Drake Apr 2023

Implementation Of Static Rfid Landmarks In Slam For Planogram Compliance, Brennan L. Drake

Honors College Theses

Autonomous robotic systems are becoming increasingly prevalent in everyday life and exhibit robust solutions in a wide range of applications. They face many obstacles with the foremost of which being SLAM, or Simultaneous Localization and Mapping, that encompasses both creation of the map of an unknown environment and localization of the robot in said environment. In this experiment, researchers propose the use of RFID tags in a semi-dynamic commercial environment to provide concrete landmarks for localization and mapping in pursuit of increased locational certainty. With this obtained, the ultimate goal of the research is to construct a robotics platform for …


Claw Hand Activity, Admin Stem For Success, Natalie Wilson Apr 2023

Claw Hand Activity, Admin Stem For Success, Natalie Wilson

STEM for Success Showcase

Activity plan where students practice coding principles by programming the actions of a claw hand


Chatgpt As Metamorphosis Designer For The Future Of Artificial Intelligence (Ai): A Conceptual Investigation, Amarjit Kumar Singh (Library Assistant), Dr. Pankaj Mathur (Deputy Librarian) Mar 2023

Chatgpt As Metamorphosis Designer For The Future Of Artificial Intelligence (Ai): A Conceptual Investigation, Amarjit Kumar Singh (Library Assistant), Dr. Pankaj Mathur (Deputy Librarian)

Library Philosophy and Practice (e-journal)

Abstract

Purpose: The purpose of this research paper is to explore ChatGPT’s potential as an innovative designer tool for the future development of artificial intelligence. Specifically, this conceptual investigation aims to analyze ChatGPT’s capabilities as a tool for designing and developing near about human intelligent systems for futuristic used and developed in the field of Artificial Intelligence (AI). Also with the helps of this paper, researchers are analyzed the strengths and weaknesses of ChatGPT as a tool, and identify possible areas for improvement in its development and implementation. This investigation focused on the various features and functions of ChatGPT that …


Parallel Real Time Rrt*: An Rrt* Based Path Planning Process, David Yackzan Jan 2023

Parallel Real Time Rrt*: An Rrt* Based Path Planning Process, David Yackzan

Theses and Dissertations--Mechanical Engineering

This thesis presents a new parallelized real-time path planning process. This process is an extension of the Real-Time Rapidly Exploring Random Trees* (RT-RRT*) algorithm developed by Naderi et al in 2015 [1]. The RT-RRT* algorithm was demonstrated on a simulated two-dimensional dynamic environment while finding paths to a varying target state. We demonstrate that the original algorithm is incapable of running at a sufficient rate for control of a 7-degree-of-freedom (7-DoF) robotic arm while maintaining a path planning tree in 7 dimensions. This limitation is due to the complexity of maintaining a tree in a high-dimensional space and the network …


Neuromorphic Computing Applications In Robotics, Noah Zins Jan 2023

Neuromorphic Computing Applications In Robotics, Noah Zins

Dissertations, Master's Theses and Master's Reports

Deep learning achieves remarkable success through training using massively labeled datasets. However, the high demands on the datasets impede the feasibility of deep learning in edge computing scenarios and suffer from the data scarcity issue. Rather than relying on labeled data, animals learn by interacting with their surroundings and memorizing the relationships between events and objects. This learning paradigm is referred to as associative learning. The successful implementation of associative learning imitates self-learning schemes analogous to animals which resolve the challenges of deep learning. Current state-of-the-art implementations of associative memory are limited to simulations with small-scale and offline paradigms. Thus, …


Human Tracking Function For Robotic Dog, Andrew Sharkey Jan 2023

Human Tracking Function For Robotic Dog, Andrew Sharkey

Williams Honors College, Honors Research Projects

With the increase the increase in automation and humans and robots working side by side, there is a need for a more organic way of controlling robots. The goal of this project is to create a control system for Boston dynamics robotic dog Spot that implements human tracking image software to follow humans using computer vision as well as using hand tracking image software to allow for control input through hand gestures.


Evaluation Of Lidar Uncertainty And Applications Towards Slam In Off-Road Environments, Zachary D. Jeffries Jan 2023

Evaluation Of Lidar Uncertainty And Applications Towards Slam In Off-Road Environments, Zachary D. Jeffries

Dissertations, Master's Theses and Master's Reports

Safe and robust operation of autonomous ground vehicles in all types of conditions and environment necessitates complex perception systems and unique, innovative solutions. This work addresses automotive lidar and maximizing the performance of a simultaneous localization and mapping stack. An exploratory experiment and an open benchmarking experiment are both presented. Additionally, a popular SLAM application is extended to use the type of information gained from lidar characterization, demonstrating the performance gains and necessity to tightly couple perception software and sensor hardware. The first exploratory experiment collects data from child-sized, low-reflectance targets over a range from 15 m to 35 m. …


Initiating Change In Care: Socially Assistive Robots, Sooraj Sushama Jan 2023

Initiating Change In Care: Socially Assistive Robots, Sooraj Sushama

Theses and Dissertations

Socially assistive robots (SAR) are autonomous machines equipped with sensors and software that allow them to interact socially with humans. SAR robots are commonly used in healthcare settings to provide patients with non-clinical support, such as conversation and emotional companionship. SARs can also deliver reminders, monitor vital signs, and provide educational information about health conditions or medications. Researchers have studied SAR applications in detail. Additionally, there has been prior research on SAR where users' sociodemographic factors and technology acceptance were studied. But even though the backbone of SAR is an advanced technology, no known research has been done on users' …


Understanding And Quantifying Human Factors In Programming From Demonstration: A User Study Proposal, Shakra Mehak, Aayush Jain, John D. Kelleher, Philip Long, Michael Guilfoyle, Maria Chiara Leva Jan 2023

Understanding And Quantifying Human Factors In Programming From Demonstration: A User Study Proposal, Shakra Mehak, Aayush Jain, John D. Kelleher, Philip Long, Michael Guilfoyle, Maria Chiara Leva

Conference papers

Programming by demonstration (PbD) is a promising method for robots to learn from direct, non-expert human interaction. This approach enables the interactive transfer of human skills to the robot. As the non-expert user is at the center of PbD, the efficacy of the learned skill is largely dependent on the demonstrations provided. Although PbD methods have been extensively developed and validated in the field of robotics, there has been inadequate confirmation of their effectiveness from the perspective of human teachability. To address this gap, we propose to experimentally investigate the impact of communicating robot learning process on the efficacy of …


Incorporating Novel Sensors For Reading Human Health State And Motion Intent Into Real-Time Computing Systems, Adam Sawyer Jan 2023

Incorporating Novel Sensors For Reading Human Health State And Motion Intent Into Real-Time Computing Systems, Adam Sawyer

Masters Theses

"Integrating sensors that read states of the human body into everyday life is an increasing desire, especially with the rise of deep learning which requires vast stores of data to make predictions. This work explores integrating these sensors into the human experience through two methods and recording the results. The first of these methods integrates a MXene based field-effect transistor sensor for the 2019-nCov spike protein with a mobile app. This allows the user to read how saturated their breath is with Covid-19. The second method integrates 3D-printed pressure sensors, and a motion capture system, into a glove to read …


Space Force Design Project, Emily Greene, Ashton Orosa, Julia Patek, Nathan Doty Jan 2023

Space Force Design Project, Emily Greene, Ashton Orosa, Julia Patek, Nathan Doty

Williams Honors College, Honors Research Projects

The objective of our research project is to develop a lab testbed composed of a curved surface to represent a spacecraft hull, a mobile robot equipped with repair tools, and a robotic arm equipped with a laser 3D scanner. This project is part of a larger grant to the University of Akron from Space Force and Air Research Labs. The lab testbed developed in this project will be used to assist in creating and testing a software and algorithm to inspect and repair spacecraft while in orbit. The project will involve researching spacecraft hulls to create an accurate simulation bed, …


Motion Planning In Artificial And Natural Vector Fields, Bernardo Martinez Rocamora Junior Jan 2023

Motion Planning In Artificial And Natural Vector Fields, Bernardo Martinez Rocamora Junior

Graduate Theses, Dissertations, and Problem Reports

This dissertation advances the field of autonomous vehicle motion planning in various challenging environments, ranging from flows and planetary atmospheres to cluttered real-world scenarios. By addressing the challenge of navigating environmental flows, this work introduces the Flow-Aware Fast Marching Tree algorithm (FlowFMT*). This algorithm optimizes motion planning for unmanned vehicles, such as UAVs and AUVs, navigating in tridimensional static flows. By considering reachability constraints caused by vehicle and flow dynamics, flow-aware neighborhood sets are found and used to reduce the number of calls to the cost function. The method computes feasible and optimal trajectories from start to goal in challenging …