Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Computer Engineering

Brunet: Disruption-Tolerant Tcp And Decentralized Wi-Fi For Small Systems Of Vehicles, Nicholas Brunet Dec 2023

Brunet: Disruption-Tolerant Tcp And Decentralized Wi-Fi For Small Systems Of Vehicles, Nicholas Brunet

Master's Theses

Reliable wireless communication is essential for small systems of vehicles. However, for small-scale robotics projects where communication is not the primary goal, programmers frequently choose to use TCP with Wi-Fi because of their familiarity with the sockets API and the widespread availability of Wi-Fi hardware. However, neither of these technologies are suitable in their default configurations for highly mobile vehicles that experience frequent, extended disruptions. BRUNET (BRUNET Really Useful NETwork) provides a two-tier software solution that enhances the communication capabilities for Linux-based systems. An ad-hoc Wi-Fi network permits decentralized peer-to-peer and multi-hop connectivity without the need for dedicated network infrastructure. …


Snr: Software Library For Introductory Robotics, Spencer F. Shaw Aug 2021

Snr: Software Library For Introductory Robotics, Spencer F. Shaw

Master's Theses

This thesis introduces "SNR," a Python library for programming robotic systems in the context of introductory robotics courses. Greater demand for roboticists has pressured educational institutions to expand robotics curricula. Students are now more likely to take robotics courses earlier and with less prior programming experience. Students may be attempting to simultaneously learn a systems programming language, a library API, and robotics concepts. SNR is written purely in Python to present familiar semantics, eliminating one of these learning curves. Industry standard robotics libraries such as ROS often require additional build tools and configuration languages. Students in introductory courses frequently lack …


Emergency Landing And Guidance System, Joseph Alarid Dec 2020

Emergency Landing And Guidance System, Joseph Alarid

Master's Theses

Every year there are thousands of aviation accidents along with hundreds of human deaths that happen around the world. While the data is sparse, it is well documented that many of these happen from emergency landings gone awry. While pilots can generally make great landings in clear daytime conditions, they are significantly handicapped when it comes to landing at night or amongst poor visibility conditions.

Due to the nature of this problem and some of the large scale advances in software technology we propose a solution that provides a significant improvement from the status quo. Using transfer learning on neural …


Flexible Fault Tolerance For The Robot Operating System, Sukhman S. Marok Jun 2020

Flexible Fault Tolerance For The Robot Operating System, Sukhman S. Marok

Master's Theses

The introduction of autonomous vehicles has the potential to reduce the number of accidents and save countless lives. These benefits can only be realized if autonomous vehicles can prove to be safer than human drivers. There is a large amount of active research around developing robust algorithms for all parts of the autonomous vehicle stack including sensing, localization, mapping, perception, prediction, planning, and control. Additionally, some of these research projects have involved the use of the Robot Operating System (ROS). However, another key aspect of realizing an autonomous vehicle is a fault-tolerant design that can ensure the safe operation of …


Decentralized, Noncooperative Multirobot Path Planning With Sample-Basedplanners, William Le Mar 2020

Decentralized, Noncooperative Multirobot Path Planning With Sample-Basedplanners, William Le

Master's Theses

In this thesis, the viability of decentralized, noncooperative multi-robot path planning algorithms is tested. Three algorithms based on the Batch Informed Trees (BIT*) algorithm are presented. The first of these algorithms combines Optimal Reciprocal Collision Avoidance (ORCA) with BIT*. The second of these algorithms uses BIT* to create a path which the robots then follow using an artificial potential field (APF) method. The final algorithm is a version of BIT* that supports replanning. While none of these algorithms take advantage of sharing information between the robots, the algorithms are able to guide the robots to their desired goals, with the …


Involuntary Signal-Based Grounding Of Civilian Unmanned Aerial Systems (Uas) In Civilian Airspace, Keith Conley Dec 2019

Involuntary Signal-Based Grounding Of Civilian Unmanned Aerial Systems (Uas) In Civilian Airspace, Keith Conley

Master's Theses

This thesis investigates the involuntary signal-based grounding of civilian unmanned aerial systems (UAS) in unauthorized air spaces. The technique proposed here will forcibly land unauthorized UAS in a given area in such a way that the UAS will not be harmed, and the pilot cannot stop the landing. The technique will not involuntarily ground authorized drones which will be determined prior to the landing. Unauthorized airspaces include military bases, university campuses, areas affected by a natural disaster, and stadiums for public events. This thesis proposes an early prototype of a hardware-based signal based involuntary grounding technique to handle the problem …


Robot Navigation In Cluttered Environments With Deep Reinforcement Learning, Ryan Weideman Jun 2019

Robot Navigation In Cluttered Environments With Deep Reinforcement Learning, Ryan Weideman

Master's Theses

The application of robotics in cluttered and dynamic environments provides a wealth of challenges. This thesis proposes a deep reinforcement learning based system that determines collision free navigation robot velocities directly from a sequence of depth images and a desired direction of travel. The system is designed such that a real robot could be placed in an unmapped, cluttered environment and be able to navigate in a desired direction with no prior knowledge. Deep Q-learning, coupled with the innovations of double Q-learning and dueling Q-networks, is applied. Two modifications of this architecture are presented to incorporate direction heading information that …


Multiple Robot Boundary Tracking With Phase And Workload Balancing, Michael Jay Boardman Jun 2010

Multiple Robot Boundary Tracking With Phase And Workload Balancing, Michael Jay Boardman

Master's Theses

This thesis discusses the use of a cooperative multiple robot system as applied to distributed tracking and sampling of a boundary edge. Within this system the boundary edge is partitioned into subsegments, each allocated to a particular robot such that workload is balanced across the robots. Also, to minimize the time between sampling local areas of the boundary edge, it is desirable to minimize the difference between each robot’s progression (i.e. phase) along its allocated sub segment of the edge. The paper introduces a new distributed controller that handles both workload and phase balancing. Simulation results are used to illustrate …