Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Computer Engineering

Space Force Design Project, Emily Greene, Ashton Orosa, Julia Patek, Nathan Doty Jan 2023

Space Force Design Project, Emily Greene, Ashton Orosa, Julia Patek, Nathan Doty

Williams Honors College, Honors Research Projects

The objective of our research project is to develop a lab testbed composed of a curved surface to represent a spacecraft hull, a mobile robot equipped with repair tools, and a robotic arm equipped with a laser 3D scanner. This project is part of a larger grant to the University of Akron from Space Force and Air Research Labs. The lab testbed developed in this project will be used to assist in creating and testing a software and algorithm to inspect and repair spacecraft while in orbit. The project will involve researching spacecraft hulls to create an accurate simulation bed, …


Motion Planning In Artificial And Natural Vector Fields, Bernardo Martinez Rocamora Junior Jan 2023

Motion Planning In Artificial And Natural Vector Fields, Bernardo Martinez Rocamora Junior

Graduate Theses, Dissertations, and Problem Reports

This dissertation advances the field of autonomous vehicle motion planning in various challenging environments, ranging from flows and planetary atmospheres to cluttered real-world scenarios. By addressing the challenge of navigating environmental flows, this work introduces the Flow-Aware Fast Marching Tree algorithm (FlowFMT*). This algorithm optimizes motion planning for unmanned vehicles, such as UAVs and AUVs, navigating in tridimensional static flows. By considering reachability constraints caused by vehicle and flow dynamics, flow-aware neighborhood sets are found and used to reduce the number of calls to the cost function. The method computes feasible and optimal trajectories from start to goal in challenging …


Characterizing And Predicting Human Visual Perception Of Unmanned Aerial Vehicle Gestures, Paul Fletcher Apr 2022

Characterizing And Predicting Human Visual Perception Of Unmanned Aerial Vehicle Gestures, Paul Fletcher

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

Unmanned Aerial Vehicles (UAVs) are being used in public domains and hazardous environments where effective communication strategies are critical. UAV gesture techniques have been shown to communicate meaning to human observers and may be ideal in contexts that require lightweight systems such as unmanned aerial flight, however, this work may be limited to an idealized range of viewer perspectives. As gesture is a visual communication technique it is necessary to consider how the perception of a robot gesture may suffer from obfuscation or self-occlusion from some viewpoints. This thesis presents the results of three online user-studies that examine participants’ ability …


Developing Reactive Distributed Aerial Robotics Platforms For Real-Time Contaminant Mapping, Joshua Ashley Jan 2022

Developing Reactive Distributed Aerial Robotics Platforms For Real-Time Contaminant Mapping, Joshua Ashley

Theses and Dissertations--Electrical and Computer Engineering

The focus of this research is to design a sensor data aggregation system and centralized sensor-driven trajectory planning algorithm for fixed-wing aircraft to optimally assist atmospheric simulators in mapping the local environment in real-time. The proposed application of this work is to be used in the event of a hazardous contaminant leak into the atmosphere as a fleet of sensing unmanned aerial vehicles (UAVs) could provide valuable information for evacuation measures. The data aggregation system was designed using a state-of-the-art networking protocol and radio with DigiMesh and a process/data management system in the ROS2 DDS. This system was tested to …


Planning Algorithms Under Uncertainty For A Team Of A Uav And A Ugv For Underground Exploration, Matteo De Petrillo Jan 2021

Planning Algorithms Under Uncertainty For A Team Of A Uav And A Ugv For Underground Exploration, Matteo De Petrillo

Graduate Theses, Dissertations, and Problem Reports

Robots’ autonomy has been studied for decades in different environments, but only recently, thanks to the advance in technology and interests, robots for underground exploration gained more attention. Due to the many challenges that any robot must face in such harsh environments, this remains an challenging and complex problem to solve.

As technology became cheaper and more accessible, the use of robots for underground ex- ploration increased. One of the main challenges is concerned with robot localization, which is not easily provided by any Global Navigation Services System (GNSS). Many developments have been achieved for indoor mobile ground robots, making …


Active Localization For Robotic Systems: Algorithms And Cost Metrics, Jared Strader Jan 2021

Active Localization For Robotic Systems: Algorithms And Cost Metrics, Jared Strader

Graduate Theses, Dissertations, and Problem Reports

In the real world, a robotic system must operate in the presence of motion and sensing uncertainty. This is caused by the fact that the motion of a robotic system is stochastic due to disturbances from the environment, and the states are only partially observable due noise in the sensor measurements. As a result, the true state of a robotic system is unknown, and estimation techniques must be used to infer the states from the belief, which is the probability distribution over all possible states. Accordingly, a robotic system must be capable of reasoning about the quality of the belief …


Characterization Of A Robotic Manipulator For Dynamic Wind Tunnel Applications, James C. Lancaster Mar 2015

Characterization Of A Robotic Manipulator For Dynamic Wind Tunnel Applications, James C. Lancaster

Theses and Dissertations

The newly acquired 6-DOF Motion Test Apparatus (MTA) was installed to perform dynamic wind tunnel testing in the AFIT Low Speed Wind Tunnel. Several complex motions revealed that the overall performance of the test rig needed improvement especially during small motions. The motions exposed that further enhancements would need to be performed individually for each joint. This research effort focused on the improvement of the MTA wrist roll motor and controller using a pitch oscillation. The controller software was improved using position feedback because the MTA wrist roll motor and controller exhibited reduced signal bias and amplitude attenuation. The enhanced …