Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Computer Engineering

Robot Navigation In Cluttered Environments With Deep Reinforcement Learning, Ryan Weideman Jun 2019

Robot Navigation In Cluttered Environments With Deep Reinforcement Learning, Ryan Weideman

Master's Theses

The application of robotics in cluttered and dynamic environments provides a wealth of challenges. This thesis proposes a deep reinforcement learning based system that determines collision free navigation robot velocities directly from a sequence of depth images and a desired direction of travel. The system is designed such that a real robot could be placed in an unmapped, cluttered environment and be able to navigate in a desired direction with no prior knowledge. Deep Q-learning, coupled with the innovations of double Q-learning and dueling Q-networks, is applied. Two modifications of this architecture are presented to incorporate direction heading information that …


Amplifying The Prediction Of Team Performance Through Swarm Intelligence And Machine Learning, Erick Michael Harris Dec 2018

Amplifying The Prediction Of Team Performance Through Swarm Intelligence And Machine Learning, Erick Michael Harris

Master's Theses

Modern companies are increasingly relying on groups of individuals to reach organizational goals and objectives, however many organizations struggle to cultivate optimal teams that can maximize performance. Fortunately, existing research has established that group personality composition (GPC), across five dimensions of personality, is a promising indicator of team effectiveness. Additionally, recent advances in technology have enabled groups of humans to form real-time, closed-loop systems that are modeled after natural swarms, like flocks of birds and colonies of bees. These Artificial Swarm Intelligences (ASI) have been shown to amplify performance in a wide range of tasks, from forecasting financial markets to …


A Data-Driven Approach To Cubesat Health Monitoring, Serbinder Singh Jun 2017

A Data-Driven Approach To Cubesat Health Monitoring, Serbinder Singh

Master's Theses

Spacecraft health monitoring is essential to ensure that a spacecraft is operating properly and has no anomalies that could jeopardize its mission. Many of the current methods of monitoring system health are difficult to use as the complexity of spacecraft increase, and are in many cases impractical on CubeSat satellites which have strict size and resource limitations. To overcome these problems, new data-driven techniques such as Inductive Monitoring System (IMS), use data mining and machine learning on archived system telemetry to create models that characterize nominal system behavior. The models that IMS creates are in the form of clusters that …


Models For Pedestrian Trajectory Prediction And Navigation In Dynamic Environments, Jeremy N. Kerfs May 2017

Models For Pedestrian Trajectory Prediction And Navigation In Dynamic Environments, Jeremy N. Kerfs

Master's Theses

Robots are no longer constrained to cages in factories and are increasingly taking on roles alongside humans. Before robots can accomplish their tasks in these dynamic environments, they must be able to navigate while avoiding collisions with pedestrians or other robots. Humans are able to move through crowds by anticipating the movements of other pedestrians and how their actions will influence others; developing a method for predicting pedestrian trajectories is a critical component of a robust robot navigation system. A current state-of-the-art approach for predicting pedestrian trajectories is Social-LSTM, which is a recurrent neural network that incorporates information about neighboring …


A Neural Network Approach To Border Gateway Protocol Peer Failure Detection And Prediction, Cory B. White Dec 2009

A Neural Network Approach To Border Gateway Protocol Peer Failure Detection And Prediction, Cory B. White

Master's Theses

The size and speed of computer networks continue to expand at a rapid pace, as do the corresponding errors, failures, and faults inherent within such extensive networks. This thesis introduces a novel approach to interface Border Gateway Protocol (BGP) computer networks with neural networks to learn the precursor connectivity patterns that emerge prior to a node failure. Details of the design and construction of a framework that utilizes neural networks to learn and monitor BGP connection states as a means of detecting and predicting BGP peer node failure are presented. Moreover, this framework is used to monitor a BGP network …