Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Robot

Discipline
Institution
Publication Year
Publication

Articles 1 - 30 of 38

Full-Text Articles in Computer Engineering

Dual-Axis Precision Imager, Gary Huarng Jun 2022

Dual-Axis Precision Imager, Gary Huarng

Computer Engineering

The Dual-Axis Precision Imager (DAPI) is a drawing robot that processes images and draws them on a whiteboard. The system has two modes: a Sobel filter mode that finds the edges of the input image with a Sobel filter, and a tri-tone grayscale mode that approximates the shading of the input image with the colors white, gray, and black. The DAPI consists of an Arduino-controlled XY gantry system with a pen mounted on the gantry head, and a Processing IDE program that processes the original image, converts the processed image into gantry instructions, and sends them to the Arduino for …


Design And Analysis Of Marangoni-Driven Robotic Surfers, Mitchel L. Timm Jan 2022

Design And Analysis Of Marangoni-Driven Robotic Surfers, Mitchel L. Timm

Dissertations, Master's Theses and Master's Reports

We designed and experimentally studied the dynamics of two robotic systems that surf along the water-air interface. The robots were self-propelled by means of creating and maintaining a surface tension gradient resulting from an asymmetric release of isopropyl alcohol (IPA). The imbalance in the distribution of surface tension surrounding the robots generates a propulsive force commonly referred to as Marangoni propulsion. First, we considered a single surfer, which was custom-made with novel control mechanisms that allow for both forward motion and steering to be remotely adjusted solely through the manipulation of local surface stresses. We analyzed the performance of this …


Garden Bot: Autonomous Home Garden Weed Removal Robot, Brendon Lovejoy, Robert Connolly, Isaac Lucas, Stevan Veselinov Jan 2022

Garden Bot: Autonomous Home Garden Weed Removal Robot, Brendon Lovejoy, Robert Connolly, Isaac Lucas, Stevan Veselinov

Williams Honors College, Honors Research Projects

With frequent weeding being a tedious chore and an essential task for a successful garden, there is need for an automated method of handling this routine. Existing technologies utilize computer vision, GPS, multiple units and other tools to remove weeds from garden plots. However, these solutions are often complex and expensive, suited for large agricultural plots in contrast to small-scale home gardens. In addition, many of these technologies, along with manual tillers and cultivators suited for home use, are unable to perform weeding within rows of crops in a process known as intra-row weeding. The Garden Bot is an autonomous, …


Integration Of Robotic And Electro-Pneumatic Systems Using Advanced Control And Communication Schemes, Chinmay Kondekar Jan 2021

Integration Of Robotic And Electro-Pneumatic Systems Using Advanced Control And Communication Schemes, Chinmay Kondekar

Dissertations, Master's Theses and Master's Reports

Modern industrial automation systems are designed by interconnecting various subsystems which work together to perform a process. The thesis project aims to integrate fragmented subsystems into a flexible and reconfigurable system through advanced communication protocols and perform a process to demonstrate the effectiveness of interconnected systems.

The system consists of three six-axis robots, one electro-pneumatic robot, and two conveyors connected using EthernetIP communication and hardwired connections. The interconnected system works together to perform machining of a workpiece using advanced control methods of CAD to robot path generation, central control through a PLC, and process control through HMI.

Standardized programming blocks …


Autonomous Butter Robot, David Chau, Michael Hegglin Jun 2020

Autonomous Butter Robot, David Chau, Michael Hegglin

Computer Engineering

Don’t you wish your butter would come to you? Well now it can with the patented Michael and David butter robot! Based on an idea from a TV show, our team set out to see if a similar robot was possible to make in real life. The objective was simple. Can we make a small table sized robot that can bring a person butter using image detection software? With that question in mind we set out buying our components. We wanted to keep it small, so we looked up devices that could do simple image processing and from there we …


Surface Autonomous Vehicle For Emergency Rescue, Max Emerick, Ryan Shields, Christopher Feickert, Raymond Impara Jun 2020

Surface Autonomous Vehicle For Emergency Rescue, Max Emerick, Ryan Shields, Christopher Feickert, Raymond Impara

Mechanical Engineering

The goal of this document is to clearly define the problem parameters and project objectives and to clearly describe the design process, planned final design, and manufacturing and testing procedures for the senior design project of Team 26: SAVER -- the Surface Autonomous Vehicle for Emergency Rescue. This is both for the purpose of project planning and for clear communication between all parties involved in the project.

The objective of the SAVER project is to develop a proof of concept for an autonomous maritime search and rescue vehicle for aiding in man-overboard missions. To accomplish this goal, a list of …


Planr.: Planar Learning Autonomous Navigation Robot, Gabrielle S. Santamorena, Daniel Kasman, Jesus Mercado, Ben Klave, Andrew Weisman, Anthony Fortner Jun 2019

Planr.: Planar Learning Autonomous Navigation Robot, Gabrielle S. Santamorena, Daniel Kasman, Jesus Mercado, Ben Klave, Andrew Weisman, Anthony Fortner

Computer Engineering

PLANR is a self-contained robot capable of mapping a space and generating 2D floor plans of a building while identifying objects of interest. It runs Robot Operating System (ROS) and houses four main hardware components. An Arduino Mega board handles the navigation, while an NVIDIA Jetson TX2, holds most of the processing power and runs ROS. An Orbbec Astra Pro stereoscopic camera is used for recognition of doors, windows and outlets and the RPLiDAR A3 laser scanner is able to give depth for wall detection and dimension measurements. The robot is intended to operate autonomously and without constant human monitoring …


Towards A Prototype Platform For Ros Integrations On A Ground Robot, Taylor Joseph Linville Whitaker May 2019

Towards A Prototype Platform For Ros Integrations On A Ground Robot, Taylor Joseph Linville Whitaker

Graduate Theses and Dissertations

The intent of this work was to develop, evaluate, and demonstrate a prototype robot platform on which ROS integrations could be explored. With observations of features and requirements of existing industrial and service mobile ground robots, a platform was designed and outfitted with appropriate components to enable the most common operational-critical functionalities and account for unforeseen components and features. The resulting Arlo Demonstration Robot accommodates basic mapping, localization, and navigation in both two and three-dimensional space as well as additional safety and teleoperation features. The control system is centered around the Zybo Z7 FPGA SoC hosting a custom hardware design. …


Autonomous Combat Robot, Andrew J. Szabo Ii, Chris Heldman, Tristin Weber, Tanya Tebcherani, Holden Leblanc, Fabian Ardeljan Jan 2019

Autonomous Combat Robot, Andrew J. Szabo Ii, Chris Heldman, Tristin Weber, Tanya Tebcherani, Holden Leblanc, Fabian Ardeljan

Williams Honors College, Honors Research Projects

This honors project will also serve as an engineering senior design project.

The objective is to design and build the software and electrical systems for a 60 lb weight class combat robot that will function autonomously and outperform manually driven robots during competition.

While running autonomously, the robot will use LiDAR sensors to detect and attack opponent robots. This robot will also be able to be remote controlled in manual mode. This will mitigate the risk in case the autonomy or sensors fail. LED lights on the robot will indicate whether it is in autonomous or manual mode. The system …


Roborodentia Final Report, Trevor James Gesell, Zeph Colby Nord, Mitchell Tyler Myjak Jun 2018

Roborodentia Final Report, Trevor James Gesell, Zeph Colby Nord, Mitchell Tyler Myjak

Computer Engineering

The Senior Project consisted of competing in Roborodentia, a competition in which groups build robots to complete a particular task. This event took place at the Cal Poly Open House on Saturday, April 12th, 2018. For the competition, the robot was to collect Nerf balls from supply tubes raised approximately 7” from the board and shoot them into nets placed along the opposite side of the course. The design, manufacture, and testing of the robot began the first week of Cal Poly winter quarter and lasted until the day of the competition.


Darling, Robot For Roborodentia 2018, Michael Le, Steven Liu Jun 2018

Darling, Robot For Roborodentia 2018, Michael Le, Steven Liu

Computer Engineering

For our senior project, our group decided to build a robot to participate in Roborodentia 2018, an annual robotics competition overlooked by Professor Seng that takes place during open house. When taking into consideration the classes that Computer Engineering students had to have taken and the skills that we have developed throughout our time here on campus, a robotics project seemed to be an appropriate culmination of both the technical and non-technical skills that we have acquired.


Development Of A Fully Instrumented, Resonant Tensegrity Strut, Kentaro Barhydt Jun 2018

Development Of A Fully Instrumented, Resonant Tensegrity Strut, Kentaro Barhydt

Honors Theses

A tensegrity is a structure composed of a series of rigid members connected in static equilibrium by tensile elements. A vibrating tensegrity robot is an underactuated system in which a set of its struts are vibrated at certain frequency combinations to achieve various locomotive gaits. Evolutionary robotics research lead by Professor John Rieffel focuses on exploiting the complex dynamics of tensegrity structures to control locomotion in vibrating tensegrity robots by finding desired gaits using genetic algorithms. A current hypothesis of interest is that the optimal locomotive gaits of a vibrating tensegrity exist at its resonant frequencies.

In order to observe …


Modeling The Consumer Acceptance Of Retail Service Robots, So Young Song Aug 2017

Modeling The Consumer Acceptance Of Retail Service Robots, So Young Song

Doctoral Dissertations

This study uses the Computers Are Social Actors (CASA) and domestication theories as the underlying framework of an acceptance model of retail service robots (RSRs). The model illustrates the relationships among facilitators, attitudes toward Human-Robot Interaction (HRI), anxiety toward robots, anticipated service quality, and the acceptance of RSRs. Specifically, the researcher investigates the extent to which the facilitators of usefulness, social capability, the appearance of RSRs, and the attitudes toward HRI affect acceptance and increase the anticipation of service quality. The researcher also tests the inhibiting role of pre-existing anxiety toward robots on the relationship between these facilitators and attitudes …


Models For Pedestrian Trajectory Prediction And Navigation In Dynamic Environments, Jeremy N. Kerfs May 2017

Models For Pedestrian Trajectory Prediction And Navigation In Dynamic Environments, Jeremy N. Kerfs

Master's Theses

Robots are no longer constrained to cages in factories and are increasingly taking on roles alongside humans. Before robots can accomplish their tasks in these dynamic environments, they must be able to navigate while avoiding collisions with pedestrians or other robots. Humans are able to move through crowds by anticipating the movements of other pedestrians and how their actions will influence others; developing a method for predicting pedestrian trajectories is a critical component of a robust robot navigation system. A current state-of-the-art approach for predicting pedestrian trajectories is Social-LSTM, which is a recurrent neural network that incorporates information about neighboring …


Underwater Robot, Joseph E. Beck, Matthew Crislip, Cody Bobek, Peyton Lucas Jan 2017

Underwater Robot, Joseph E. Beck, Matthew Crislip, Cody Bobek, Peyton Lucas

Williams Honors College, Honors Research Projects

Remotely Operated Vehicles (ROVs) are remote controlled drones operated by a non-local user. The ROV we plan to build is connected by a tethering wire to a floating buoy that contains an antenna which will send signals between the base station and the ROV. The ROV is equipped with a video camera, ballast system, propulsion system, lights, and a depth sensor. The ROV will transmit a live video feed to the user, while receiving input signals to control its movement from the base station.


Analysis Of Feedback Control Applied With Command Shaping To Minimize Residual Vibration, Nicholas L. Jacobs Aug 2016

Analysis Of Feedback Control Applied With Command Shaping To Minimize Residual Vibration, Nicholas L. Jacobs

Open Access Theses

Joint flexibility is a physical trait that affects all robotic systems to some degree. This characteristic has been shown to be very detrimental to the performance of these robotic systems when implementing fast point-to-point motion. During such motion, the robot will induce vibrations in its structure that will extend past the completion of the move. Many techniques have been applied over the years in order to minimize these residual vibrations. One such method is known as command shaping, which will construct the input profile so as to avoid exciting the natural frequencies of the system. This work seeks to extend …


Roborodentia Robot: Tektronix, Sean Yap Jun 2016

Roborodentia Robot: Tektronix, Sean Yap

Computer Engineering

Tektronix is a robot created to compete in the 2016 Roborodentia Competition. This report details the full function and implementation of the robot.


Roborodentia 2016: Scorpion, Tyler Whalen Jun 2016

Roborodentia 2016: Scorpion, Tyler Whalen

Computer Engineering

This report showcases my entry into the Roborodentia 2016 competition, and my senior project. I chose this project because robotics has always interested me, and this was a great opportunity to jump in headfirst.

I will step through my design decisions and detail all information necessary for replicating this build.


Roborodentia Robot (Amazon Prime), Alec Cheung Jun 2016

Roborodentia Robot (Amazon Prime), Alec Cheung

Computer Science and Software Engineering

Roborodentia is an annual autonomous robotics competition sponsored and hosted by Cal Poly. In the 2016 competition, participants are to design a robot that scores the most points by gathering rings from marked supply pegs and placing them onto marked scoring pegs. For Roborodentia I designed, constructed, and programmed a robot, named Amazon Prime, to compete.


Localization And Mapping Of Unknown Locations And Tunnels With Unmanned Ground Vehicles, Doris Turnage Jan 2016

Localization And Mapping Of Unknown Locations And Tunnels With Unmanned Ground Vehicles, Doris Turnage

Electronic Theses and Dissertations

The main goals of this research were to enhance a commercial off the shelf (COTS) software platform to support unmanned ground vehicles (UGVs) exploring the complex environment of tunnels, to test the platform within a simulation environment, and to validate the architecture through field testing. Developing this platform will enhance the U. S. Army Engineering Research and Development Center’s (ERDC’s) current capabilities and create a safe and efficient autonomous vehicle to perform the following functions within tunnels: (1) localization (e.g., position tracking) and mapping of its environment, (2) traversing varied terrains, (3) sensing the environment for objects of interest, and …


Indoor And Outdoor Real Time Information Collection In Disaster Scenario, Dongyi Yang Nov 2015

Indoor And Outdoor Real Time Information Collection In Disaster Scenario, Dongyi Yang

Masters Theses

A disaster usually severely harms human health and property. After a disaster, great amount of information of a disaster area is needed urgently. The information not only indicates the severity of the disaster, but also is crucial for an efficient search and rescue process. In order to quickly and accurately collect real time information in a disaster scenario, a mobile platform is developed for an outdoor scenario and a localization and navigation system for responders is introduced for an indoor scenario.

The mobile platform has been integrated to the DIORAMA system. It is built with a 6-wheel robot chassis along …


Dual 7-Degree-Of-Freedom Robotic Arm Remote Teleoperation Using Haptic Devices, Yu-Cheng Wang Sep 2015

Dual 7-Degree-Of-Freedom Robotic Arm Remote Teleoperation Using Haptic Devices, Yu-Cheng Wang

USF Tampa Graduate Theses and Dissertations

A teleoperated system of dual redundant manipulator will be controlled in this thesis. The robot used with the dual redundant manipulator in this thesis is Baxter. Baxter’s redundant robot arms are 7-degree-of-freedom arms. The problem that will be solved in this thesis is optimization of the 7-degree-of-freedom robot arms. The control algorithm of the 7-degree-of-freedom robot arms will be discussed and built. A simulation program will be built to test the control algorithm. Based on the control algorithm, a teleoperation system will be created for Baxter. The controller used is Omni, which is a six-joint haptic device. Omni will also …


Roborodentia Robot 2015, Travis Stuever Jun 2015

Roborodentia Robot 2015, Travis Stuever

Computer Engineering

The Roborodentia 2015 competition was a ring based challenge that had participants move PVC rings from one side of a course to another all within 3 minutes. In order to succeed in this competition there needs to be a good robotic design, thought out use cases, and good solid software.


Robot Localization Obtained By Using Inertial Measurements, Computer Vision, And Wireless Ranging, William Baker Jan 2015

Robot Localization Obtained By Using Inertial Measurements, Computer Vision, And Wireless Ranging, William Baker

Graduate College Dissertations and Theses

Robots have long been used for completing tasks that are too difficult, dangerous, or distant to be accomplished by humans. In many cases, these robots are highly specialized platforms - often expensive and capable of completing every task related to a mission's objective. An alternative approach is to use multiple platforms, each less capable in terms of number of tasks and thus significantly less complex and less costly. With advancements in embedded computing and wireless communications, multiple such platforms have been shown to work together to accomplish mission objectives. In the extreme, collections of very simple robots have demonstrated emergent …


Robotic Book Scanner, Tobias Samuel Elder, Cynthia Marie Wong Jun 2014

Robotic Book Scanner, Tobias Samuel Elder, Cynthia Marie Wong

Computer Engineering

Digitizing books has been an issue tackled by companies to allow people to read off Kindles and iPads rather than the traditional paperback. Companies like Google have spent more than $1000 on machines to convert books into electronic copies readable on devices. Yet, not much effort has been made into the invention of an automatic book scanner for consumers. This project seeks to determine a cost-effective approach to robotic book scanning to create PDFs from physical books. This project serves as a proof of concept for a reasonably priced automatic book scanner accessible to consumers. Potentially, the device may be …


Automated Foosball Table, Jim R. Stefani, Alex J. Herpy, Brett Gordon Jaeger, Kevin S. Haydon, Derek Alan Hamel Jun 2014

Automated Foosball Table, Jim R. Stefani, Alex J. Herpy, Brett Gordon Jaeger, Kevin S. Haydon, Derek Alan Hamel

Mechanical Engineering

This project is the second iteration of an automated foosball table for Yaskawa America as a trade show display. The table is meant to provide an interactive experience which highlights the speed and precision of the Yaskawa hardware. The first iteration of the project was mainly focused on creating the physical hardware for the system and to begin the basic programming for the system. This phase of the project was focused on finalizing the physical hardware of the system, implementing the vision system and to continue the basic programing of the system AI. A third team will be assigned to …


Evolving Soft Robots With Vibration Based Movement, Andrew Danise Jun 2014

Evolving Soft Robots With Vibration Based Movement, Andrew Danise

Honors Theses

Creating effective designs for soft robots is extremely difficult due to the large number of different possibilities for shape, material properties, and movement mechanisms. Due to the lack of methods to design soft robots, previous research has used evolutionary algorithms to tackle this problem of overwhelming options. A popular technique is to use generative encodings to create designs using evolutionary algorithms because of their modularity and ability to induce large scale coordinated change. The main drawback of generative encodings is that it is difficult to know where along the ontogenic trajectory resides the phenotype with the highest fitness. The two …


Flarebot - Analysis Of An Autonomous Robot, Sanat S. Sahasrabudhe Jun 2013

Flarebot - Analysis Of An Autonomous Robot, Sanat S. Sahasrabudhe

Computer Engineering

Autonomous robots are increasing in popularity for educational, research, and household purposes. This report analyzes the design and functionality of one such example, called FlareBot, which is designed to self-navigate and stack cans. Specifically, the robot is designed to follow a fixed path for navigation, and stack any cans it comes across. Once a maximum number of cans is stacked, the robot releases them and restarts the process. The design is achieved using three DC motors, two servo motors, one line sensor, and one infrared sensor. Designing autonomous robots is a strong test of the engineering design process, which includes …


The Design Of A Maneuverable Rolling Robot, David Carabis Jun 2013

The Design Of A Maneuverable Rolling Robot, David Carabis

Honors Theses

The purpose of this project was to design, fabricate, and test a maneuverable rolling robot. Although some other rolling robots were researched for this project, a novel approach was taken to design a unique, cheap robot that could turn and was fully enclosed by a rotating outer shell. The design and research phase of this project included the evaluation of several designs, the development of a mathematical model detailing forward motion of the robot, and the derivation of several design equations. Of the possible designs, an interior counterweight was chosen to provide a torque to the outside shell and move …


Design Of A Running Robot And The Effects Of Foot Placement In The Transverse Plane, Timothy James Sullivan Jan 2013

Design Of A Running Robot And The Effects Of Foot Placement In The Transverse Plane, Timothy James Sullivan

Open Access Theses

The purpose of this thesis is to make advances in the design of humanoid bipedal running robots. We focus on achieving dynamic running locomotion because it is one metric by which we can measure how far robotic technologies have advanced, in relation to existing benchmarks set by humans and other animals. Designing a running human-inspired robot is challenging because human bodies are exceptionally complex mechanisms to mimic. There are only a few humanoid robots designed specifically for running and the existing robots are either constrained to a plane, do not yet exhibit human-like motion, or are unstable.

One aspect of …