Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Other Electrical and Computer Engineering

Institution
Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 208

Full-Text Articles in Computer Engineering

Low-Power, Event-Driven System On A Chip For Charge Pulse Processing Applications, Joseph A. Schmitz Dec 2023

Low-Power, Event-Driven System On A Chip For Charge Pulse Processing Applications, Joseph A. Schmitz

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

This dissertation presents an electronic architecture and methodology capable of processing charge pulses generated by a range of sensors, including radiation detectors and tactile synthetic skin. These sensors output a charge signal proportional to the input stimulus, which is processed electronically in both the analog and digital domains. The presented work implements this functionality using an event-driven methodology, which greatly reduces power consumption compared to standard implementations. This enables new application areas that require a long operating time or compact physical dimensions, which would not otherwise be possible. The architecture is designed, fabricated, and tested in the aforementioned applications to …


Amorphous Boron Carbide-Amorphous Silicon Heterojunction Devices, Vojislav Medic Dec 2023

Amorphous Boron Carbide-Amorphous Silicon Heterojunction Devices, Vojislav Medic

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

This dissertation will show successful development and characterization of amorphous boron carbide-amorphous silicon heterojunction device with potential for neutron detection. The amorphous hydrogenated boron carbide (a-BC:H) has been extensively researched as a semiconductor for neutron voltaic device fabrication. Naturally occurring boron contains 19.8% of boron isotope B10 that has a high absorption cross section of thermal neutrons at lower energies, and boron carbide contains 14.7% of that B10 isotope. Therefore, as a semiconductor compound of boron a-BC:H has the ability to absorb radiation, generate charge carriers, and collect those carriers. Previous work on a-BC:H devices investigated the fabrication …


A Novel Graph Neural Network-Based Framework For Automatic Modulation Classification In Mobile Environments, Pejman Ghasemzadeh May 2023

A Novel Graph Neural Network-Based Framework For Automatic Modulation Classification In Mobile Environments, Pejman Ghasemzadeh

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Automatic modulation classification (AMC) refers to a signal processing procedure through which the modulation type and order of an observed signal are identified without any prior information about the communications setup. AMC has been recognized as one of the essential measures in various communications research fields such as intelligent modem design, spectrum sensing and management, and threat detection. The research literature in AMC is limited to accounting only for the noise that affects the received signal, which makes their models applicable for stationary environments. However, a more practical and real-world application of AMC can be found in mobile environments where …


Unobtrusive Data Collection In Clinical Settings For Advanced Patient Monitoring And Machine Learning, Walker Arce May 2023

Unobtrusive Data Collection In Clinical Settings For Advanced Patient Monitoring And Machine Learning, Walker Arce

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

When applying machine learning to clinical practice, a major hurdle that will be encountered is the lack of available data. While the data collected in clinical therapies is suitable for the types of analysis that are needed to measure and track clinical outcomes, it may not be suitable for other types of analysis. For instance, video data may have poor alignment with behavioral data, making it impossible to extract the videos frames that directly correlate with the observed behavior. Alternatively, clinicians may be exploring new data modalities, such as physiological signal collection, to research methods of improving clinical outcomes that …


Modeling And Visualization Of Competing Escalation Dynamics: A Multilayer Multiagent Network Approach, Josh Allen May 2023

Modeling And Visualization Of Competing Escalation Dynamics: A Multilayer Multiagent Network Approach, Josh Allen

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Recent advances in military technology, such as hypersonic missiles, which can travel at more than five times the speed of sound and descend quickly into the atmosphere, give world nuclear superpowers a new edge. These advances up the game for nuclear superpowers with an extremely rapid, intense burst of military striking capability to secure upfront gains before encountering potentially overwhelming military confrontation. However, this so-called fait accompli has not been systematically studied by the United States in the perspective of the escalation philosophies of nuclear power competitors, or the mathematical modeling and visualization of multi-modal escalation dynamics. This gap may …


Region-Specified Inverse Design Of Absorption And Scattering In Nanoparticles By Using Machine Learning, Alex Vallone, Nooshin M. Estakhri, Nasim Mohammadi Estrakhri Apr 2023

Region-Specified Inverse Design Of Absorption And Scattering In Nanoparticles By Using Machine Learning, Alex Vallone, Nooshin M. Estakhri, Nasim Mohammadi Estrakhri

Engineering Faculty Articles and Research

Machine learning provides a promising platform for both forward modeling and the inverse design of photonic structures. Relying on a data-driven approach, machine learning is especially appealing for situations when it is not feasible to derive an analytical solution for a complex problem. There has been a great amount of recent interest in constructing machine learning models suitable for different electromagnetic problems. In this work, we adapt a region-specified design approach for the inverse design of multilayered nanoparticles. Given the high computational cost of dataset generation for electromagnetic problems, we specifically investigate the case of a small training dataset, enhanced …


Para Cima Y Pa’ Abajo: Building Bridges Between Hci Research In Latin America And In The Global North, Pedro Reynolds-Cuéllar, Marisol Wong-Villacres, Karla A. Badillo-Urquiola, Mayra Donaji Barrera-Machuca, Franceli L. Cibrian, Marianela Ciolfi Felice, Carolina Fuentes, Laura Sanely Gaytán-Lugo, Vivian Genaro Motti, Monica Perusquía-Hernández, Oscar A. Lemus Apr 2023

Para Cima Y Pa’ Abajo: Building Bridges Between Hci Research In Latin America And In The Global North, Pedro Reynolds-Cuéllar, Marisol Wong-Villacres, Karla A. Badillo-Urquiola, Mayra Donaji Barrera-Machuca, Franceli L. Cibrian, Marianela Ciolfi Felice, Carolina Fuentes, Laura Sanely Gaytán-Lugo, Vivian Genaro Motti, Monica Perusquía-Hernández, Oscar A. Lemus

Engineering Faculty Articles and Research

The Human-computer Interaction (HCI) community has the opportunity to foster the integration of research practices across the Global South and North to begin overcoming colonial relationships. In this paper, we focus on the case of Latin America (LATAM), where initiatives to increase the representation of HCI practitioners lack a consolidated understanding of the practices they employ, the factors that influence them, and the challenges that practitioners face. To address this knowledge gap, we employ a mixed-methods approach, comprising a survey (66 respondents) and in-depth interviews (19 interviewees). Our analyses characterize a set of research perspectives on how HCI is practiced …


Chatgpt As Metamorphosis Designer For The Future Of Artificial Intelligence (Ai): A Conceptual Investigation, Amarjit Kumar Singh (Library Assistant), Dr. Pankaj Mathur (Deputy Librarian) Mar 2023

Chatgpt As Metamorphosis Designer For The Future Of Artificial Intelligence (Ai): A Conceptual Investigation, Amarjit Kumar Singh (Library Assistant), Dr. Pankaj Mathur (Deputy Librarian)

Library Philosophy and Practice (e-journal)

Abstract

Purpose: The purpose of this research paper is to explore ChatGPT’s potential as an innovative designer tool for the future development of artificial intelligence. Specifically, this conceptual investigation aims to analyze ChatGPT’s capabilities as a tool for designing and developing near about human intelligent systems for futuristic used and developed in the field of Artificial Intelligence (AI). Also with the helps of this paper, researchers are analyzed the strengths and weaknesses of ChatGPT as a tool, and identify possible areas for improvement in its development and implementation. This investigation focused on the various features and functions of ChatGPT that …


Low-Power Redundant-Transition-Free Tspc Dual-Edge-Triggering Flip-Flop Using Single-Transistor-Clocked Buffer, Zisong Wang, Peiyi Zhao, Tom Springer, Congyi Zhu, Jaccob Mau, Andrew Wells, Yinshui Xia, Lingli Wang Mar 2023

Low-Power Redundant-Transition-Free Tspc Dual-Edge-Triggering Flip-Flop Using Single-Transistor-Clocked Buffer, Zisong Wang, Peiyi Zhao, Tom Springer, Congyi Zhu, Jaccob Mau, Andrew Wells, Yinshui Xia, Lingli Wang

Engineering Faculty Articles and Research

In the modern graphics processing unit (GPU)/artificial intelligence (AI) era, flip-flop (FF) has become one of the most power-hungry blocks in processors. To address this issue, a novel single-phase-clock dual-edge-triggering (DET) FF using a single-transistor-clocked (STC) buffer (STCB) is proposed. The STCB uses a single-clocked transistor in the data sampling path, which completely removes clock redundant transitions (RTs) and internal RTs that exist in other DET designs. Verified by post-layout simulations in 22 nm fully depleted silicon on insulator (FD-SOI) CMOS, when operating at 10% switching activity, the proposed STC-DET outperforms prior state-of-the-art low-power DET in power consumption by 14% …


A Robust Platform For Mobile Robotics Teaching And Developing Using Arduino’S Integrated Development Environment (Ide) For Programming The Arduino Mega 2560, Sajjad Alhassan Dec 2022

A Robust Platform For Mobile Robotics Teaching And Developing Using Arduino’S Integrated Development Environment (Ide) For Programming The Arduino Mega 2560, Sajjad Alhassan

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In light of the rapid pace at which development happens with modern technology, mobile robots play an important role in our daily lives. This is due to their great importance in facilitating the affairs of life in various economic, commercial, industrial, scientific, and many other fields. In this research and project, we have restructured the microcontroller and system for one of the mobile robots (CEENBOT) that was designed by the University of Nebraska and replaced it with an Arduino Mega 2560.

The purpose of using the Arduino Mega 2560 robot is to provide alternative programming for the CEENBOT platform to …


A Low-Power, Low-Area 10-Bit Sar Adc With Length-Based Capacitive Dac, Zhili Pan Dec 2022

A Low-Power, Low-Area 10-Bit Sar Adc With Length-Based Capacitive Dac, Zhili Pan

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

A 2.5 V single-ended 10-bit successive-approximation-register analog-to-digital converter (SAR ADC) based on the TSMC 65 nm CMOS process is designed with the goal of achieving low power consumption (33.63 pJ/sample) and small area (2874 µm^2 ). It utilizes a novel length-based capacitive digital-to-analog converter (CDAC) layout to achieve low total capacitance for power efficiency, and a custom static asynchronous logic to free the dependence on a high-frequency external clock source. Two test chips have been designed and the problems found through testing the first chip are analyzed. Multiple improved versions of the ADC with minor variations are implemented on the …


A Stacking-Based Misbehavior Detection System In Vehicular Communication Networks, Troy Green Dec 2022

A Stacking-Based Misbehavior Detection System In Vehicular Communication Networks, Troy Green

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Over the past few decades communication systems for vehicles have continued to advance. Communications between these vehicles can be classified into safety related and non safety related messages. An example of a safety related message would be one vehicle warning others of an icy road it encountered, where a non safety related communication would be a passenger streaming a movie. In either case it's important to secure the communications so that the system continues to behave as expected. In this thesis we propose a Misbehavior Detection System (MDS), which is a system that monitors messages sent between vehicles, and detects …


Low Power Multi-Channel Interface For Charge Based Tactile Sensors, Samuel Hansen Dec 2022

Low Power Multi-Channel Interface For Charge Based Tactile Sensors, Samuel Hansen

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Analog front end electronics are designed in 65 nm CMOS technology to process charge pulses arriving from a tactile sensor array. This is accomplished through the use of charge sensitive amplifiers and discrete time filters with tunable clock signals located in each of the analog front ends. Sensors were emulated using Gaussian pulses during simulation. The digital side of the system uses SAR (successive approximation register) ADCs for sampling of the processed sensor signals.

Adviser: Sina Balkır


A Novel Testbed For Evaluation Of Operational Technology Communications Protocols And Their On-Device Implementations, Matthew Boeding Aug 2022

A Novel Testbed For Evaluation Of Operational Technology Communications Protocols And Their On-Device Implementations, Matthew Boeding

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Operational Technology (OT) and Infrastructure Technology (IT) systems are converging with the rapid addition of centralized remote management in OT systems. Previously air-gapped systems are now interconnected through the internet with application-specific protocols. This has led to systems that had limited access points being remotely accessible. In different OT sectors, legacy protocols previously transmitted over serial communication were updated to allow internet communication with legacy devices. New protocols such as IEC-61850 were also introduced for monitoring of different OT resources. The IEC-61850 standard’s Generic Object Oriented Substation Event (GOOSE) protocol outlines the representation and communication of a variety of different …


Femtosecond Laser Surface Processing To Create Self-Organized Micro- And Nano-Scale Features On Composite And Ceramic Materials, Nate Koeppe Aug 2022

Femtosecond Laser Surface Processing To Create Self-Organized Micro- And Nano-Scale Features On Composite And Ceramic Materials, Nate Koeppe

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Femtosecond laser surface processing (FLSP) is applied to a range of materials in this thesis. The materials studied were a carbon fiber reinforced polymer (CFRP), a thermosetting polymer, silicon nitride (Si3N4), and ceramic alumina. The CFRP is a composite material consisting of a thermosetting polymer and carbon fibers. The CFRP are referred to as a composite and the thermosetting polymer is referred to as a resin in this thesis. Alumina can exist in many different forms. The alumina used is 0.5 mm thick nonporous alumina sheets purchased from McMaster-Carr, and will be referred to as alumina …


Classifying Toe Walking Gait Patterns Among Children Diagnosed With Idiopathic Toe Walking Using Wearable Sensors And Machine Learning Algorithms, Rahul Soangra, Yuxin Wen, Hualin Yang, Marybeth Grant-Beuttler Jul 2022

Classifying Toe Walking Gait Patterns Among Children Diagnosed With Idiopathic Toe Walking Using Wearable Sensors And Machine Learning Algorithms, Rahul Soangra, Yuxin Wen, Hualin Yang, Marybeth Grant-Beuttler

Physical Therapy Faculty Articles and Research

Idiopathic toe walking (ITW) is a gait abnormality in which children’s toes touch at initial contact and demonstrate limited or no heel contact throughout the gait cycle. Toe walking results in poor balance, increased risk of falling, and developmental delays among children. Identifying toe walking steps during walking can facilitate targeted intervention among children diagnosed with ITW. With recent advances in wearable sensing, communication technologies, and machine learning, new avenues of managing toe walking behavior among children are feasible. In this study, we investigate the capabilities of Machine Learning (ML) algorithms in identifying initial foot contact (heel strike versus toe …


One-Bit Algorithm Considerations For Sparse Pmcw Radar, Ethan Triplett Jul 2022

One-Bit Algorithm Considerations For Sparse Pmcw Radar, Ethan Triplett

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Phase Modulated Continuous Wave (PMCW) radar an emerging technology for autonomous cars. It is more flexible than the current frequency modulated systems, offering better detection resolution, interference mitigation, and future development opportunities. The issue preventing PMCW adoption is the need for high sample-rate analog to digital converters (ADCs). Due to device limits, a large increase in cost and power consumption occurs for every added resolution bit for a given sampling rate. This thesis explores radar detection techniques for few-bit and 1-bit ADC measurements. 1-bit quantization typically results in poor amplitude estimation, which can limit detections if the target signals are …


Project Metamorphosis: Designing A Dynamic Framework For Converting Musical Compositions Into Paintings, Rao Hamza Ali, Grace Fong, Erik Linstead May 2022

Project Metamorphosis: Designing A Dynamic Framework For Converting Musical Compositions Into Paintings, Rao Hamza Ali, Grace Fong, Erik Linstead

Engineering Faculty Articles and Research

The authors present an automated, rule-based system for converting piano compositions into paintings. Using a color-note association scale presented by Edward Maryon in 1919, which correlates 12-tone scale with 12 hues of the color circle, the authors present a simple approach for extracting colors associated with each note played in a piano composition. The authors also describe the color extraction and art generation process in detail, as well as the process for creating “moving art,” which imitates the progression of a musical piece in real time. They share and discuss artworks generated for four well-known piano compositions.


Identification Of Orthologous Gene Groups Using Machine Learning, Dillon Burgess Apr 2022

Identification Of Orthologous Gene Groups Using Machine Learning, Dillon Burgess

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Identification of genes that show similarity between different organisms, a.k.a orthologous genes, is an open problem in computational biology. The purpose of this thesis is to create an algorithm to group orthologous genes using machine learning. Following an optimization step to find the best characterization based on training data, we represented sequences of genes or proteins with kmer vectors. These kmer vectors were then clustered into orthologous groups using hierarchical clustering. We optimized the clustering phase with the same training data for the method and parameter selection. Our results indicated that use of protein sequences with k=2 and scaling the …


Unconventional Computation Including Quantum Computation, Bruce J. Maclennan Apr 2022

Unconventional Computation Including Quantum Computation, Bruce J. Maclennan

Faculty Publications and Other Works -- EECS

Unconventional computation (or non-standard computation) refers to the use of non-traditional technologies and computing paradigms. As we approach the limits of Moore’s Law, progress in computation will depend on going beyond binary electronics and on exploring new paradigms and technologies for information processing and control. This book surveys some topics relevant to unconventional computation, including the definition of unconventional computations, the physics of computation, quantum computation, DNA and molecular computation, and analog computation. This book is the content of a course taught at UTK.


Cognality Vr: Exploring A Mobile Vr App With Multiple Stakeholders To Reduce Meltdowns In Autistic Children, Louanne E. Boyd, Espen Garner, Ian Kim, Gianna Valencia Apr 2022

Cognality Vr: Exploring A Mobile Vr App With Multiple Stakeholders To Reduce Meltdowns In Autistic Children, Louanne E. Boyd, Espen Garner, Ian Kim, Gianna Valencia

Engineering Faculty Articles and Research

Many autistic children can have difficulty communicating, understanding others, and interacting with new and unfamiliar environments. At times they may suffer from a meltdown. The major contributing factor to meltdowns is sensory overwhelm. Technological solutions have shown promise in improving the quality of life for autistic children-however little exists to manage meltdowns. In this work with stakeholders, we design and deploy a low cost, mobile VR application to provide relief during sensory discomfort. Through the analysis of surveys from 88 stakeholders from a variety of groups (i.e., autistic adults, children with autism, parents of autistic individuals, and medical practitioners), we …


Manipulating Image Luminance To Improve Eye Gaze And Verbal Behavior In Autistic Children, Louanne Boyd, Vincent Berardi, Deanna Hughes, Franceli L. Cibrian, Jazette Johnson, Viseth Sean, Eliza Delpizzo-Cheng, Brandon Mackin, Ayra Tusneem, Riya Mody, Sara Jones, Karen Lotich Apr 2022

Manipulating Image Luminance To Improve Eye Gaze And Verbal Behavior In Autistic Children, Louanne Boyd, Vincent Berardi, Deanna Hughes, Franceli L. Cibrian, Jazette Johnson, Viseth Sean, Eliza Delpizzo-Cheng, Brandon Mackin, Ayra Tusneem, Riya Mody, Sara Jones, Karen Lotich

Engineering Faculty Articles and Research

Autism has been characterized by a tendency to attend to the local visual details over surveying an image to understand the gist–a phenomenon called local interference. This sensory processing trait has been found to negatively impact social communication. Although much work has been conducted to understand these traits, little to no work has been conducted to intervene to provide support for local interference. Additionally, recent understanding of autism now introduces the core role of sensory processing and its impact on social communication. However, no interventions to the end of our knowledge have been explored to leverage this relationship. This work …


Learning Domain Invariant Information To Enhance Presentation Attack Detection In Visible Face Recognition Systems, Jennifer Hamblin Apr 2022

Learning Domain Invariant Information To Enhance Presentation Attack Detection In Visible Face Recognition Systems, Jennifer Hamblin

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Face signatures, including size, shape, texture, skin tone, eye color, appearance, and scars/marks, are widely used as discriminative, biometric information for access control. Despite recent advancements in facial recognition systems, presentation attacks on facial recognition systems have become increasingly sophisticated. The ability to detect presentation attacks or spoofing attempts is a pressing concern for the integrity, security, and trust of facial recognition systems. Multi-spectral imaging has been previously introduced as a way to improve presentation attack detection by utilizing sensors that are sensitive to different regions of the electromagnetic spectrum (e.g., visible, near infrared, long-wave infrared). Although multi-spectral presentation attack …


A Deep Learning-Based Approach To Extraction Of Filler Morphology In Sem Images With The Application Of Automated Quality Inspection, Md. Fashiar Rahman, Tzu-Liang Bill Tseng, Jianguo Wu, Yuxin Wen, Yirong Lin Mar 2022

A Deep Learning-Based Approach To Extraction Of Filler Morphology In Sem Images With The Application Of Automated Quality Inspection, Md. Fashiar Rahman, Tzu-Liang Bill Tseng, Jianguo Wu, Yuxin Wen, Yirong Lin

Engineering Faculty Articles and Research

Automatic extraction of filler morphology (size, orientation, and spatial distribution) in Scanning Electron Microscopic (SEM) images is essential in many applications such as automatic quality inspection in composite manufacturing. Extraction of filler morphology greatly depends on accurate segmentation of fillers (fibers and particles), which is a challenging task due to the overlap of fibers and particles and their obscure presence in SEM images. Convolution Neural Networks (CNNs) have been shown to be very effective at object recognition in digital images. This paper proposes an automatic filler detection system in SEM images, utilizing a Mask Region-based CNN architecture. The proposed system …


Three Wave Mixing In Epsilon-Near-Zero Plasmonic Waveguides For Signal Regeneration, Nicholas Mirchandani, Mark C. Harrison Mar 2022

Three Wave Mixing In Epsilon-Near-Zero Plasmonic Waveguides For Signal Regeneration, Nicholas Mirchandani, Mark C. Harrison

Engineering Faculty Articles and Research

Vast improvements in communications technology are possible if the conversion of digital information from optical to electric and back can be removed. Plasmonic devices offer one solution due to optical computing’s potential for increased bandwidth, which would enable increased throughput and enhanced security. Plasmonic devices have small footprints and interface with electronics easily, but these potential improvements are offset by the large device footprints of conventional signal regeneration schemes, since surface plasmon polaritons (SPPs) are incredibly lossy. As such, there is a need for novel regeneration schemes. The continuous, uniform, and unambiguous digital information encoding method is phase-shift-keying (PSK), so …


A Neural Network Based Proportional Hazard Model For Iot Signal Fusion And Failure Prediction, Yuxin Wen, Xingxin Guo, Junbo Son, Jianguo Wu Jan 2022

A Neural Network Based Proportional Hazard Model For Iot Signal Fusion And Failure Prediction, Yuxin Wen, Xingxin Guo, Junbo Son, Jianguo Wu

Engineering Faculty Articles and Research

Accurate prediction of remaining useful life (RUL) plays a critical role in optimizing condition-based maintenance decisions. In this paper, a novel joint prognostic modeling framework that simultaneously combines both time-to-event data and multi-sensor degradation signals is proposed. With the increasing use of IoT devices, unprecedented amounts of diverse signals associated with the underlying health condition of in-situ units have become easily accessible. To take full advantage of the modern IoT-enabled engineering systems, we propose a specialized framework for RUL prediction at the level of individual units. Specifically, a Bayesian linear regression model is developed for the multi-sensor degradation signals and …


Sustainable Computing - Without The Hot Air, Noman Bashir, David Irwin, Prashant Shenoy, Abel Souza Jan 2022

Sustainable Computing - Without The Hot Air, Noman Bashir, David Irwin, Prashant Shenoy, Abel Souza

Publications

The demand for computing is continuing to grow exponentially. This growth will translate to exponential growth in computing's energy consumption unless improvements in its energy-efficiency can outpace increases in its demand. Yet, after decades of research, further improving energy-efficiency is becoming increasingly challenging, as it is already highly optimized. As a result, at some point, increases in computing demand are likely to outpace increases in its energy-efficiency, potentially by a wide margin. Such exponential growth, if left unchecked, will position computing as a substantial contributor to global carbon emissions. While prominent technology companies have recognized the problem and sought to …


Risk-Based Machine Learning Approaches For Probabilistic Transient Stability, Umair Shahzad Dec 2021

Risk-Based Machine Learning Approaches For Probabilistic Transient Stability, Umair Shahzad

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Power systems are getting more complex than ever and are consequently operating close to their limit of stability. Moreover, with the increasing demand of renewable wind generation, and the requirement to maintain a secure power system, the importance of transient stability cannot be overestimated. Considering its significance in power system security, it is important to propose a different approach for enhancing the transient stability, considering uncertainties. Current deterministic industry practices of transient stability assessment ignore the probabilistic nature of variables (fault type, fault location, fault clearing time, etc.). These approaches typically provide a conservative criterion and can result in expensive …


Let's Read: Designing A Smart Display Application To Support Codas When Learning Spoken Language, Katie Rodeghiero, Yingying Yuki Chen, Annika M. Hettmann, Franceli L. Cibrian Nov 2021

Let's Read: Designing A Smart Display Application To Support Codas When Learning Spoken Language, Katie Rodeghiero, Yingying Yuki Chen, Annika M. Hettmann, Franceli L. Cibrian

Engineering Faculty Articles and Research

Hearing children of Deaf adults (CODAs) face many challenges including having difficulty learning spoken languages, experiencing social judgment, and encountering greater responsibilities at home. In this paper, we present a proposal for a smart display application called Let's Read that aims to support CODAs when learning spoken language. We conducted a qualitative analysis using online community content in English to develop the first version of the prototype. Then, we conducted a heuristic evaluation to improve the proposed prototype. As future work, we plan to use this prototype to conduct participatory design sessions with Deaf adults and CODAs to evaluate the …


Digital Markers Of Autism, Ivonne Monarca, Franceli L. Cibrian, Monica Tentori Nov 2021

Digital Markers Of Autism, Ivonne Monarca, Franceli L. Cibrian, Monica Tentori

Engineering Faculty Articles and Research

Autism Spectrum Disorder (ASD) is a neurological condition that affects how a people communicate and interact with others. The use of screening tools during childhood is very important to detect those children who need to be referred for a diagnosis of ASD. However, most screening tools are based on parents' responses so the result can be subjective. In addition, most screening tools focus on social and communicative skills leaving aside sensory features, which have shown to have the potential to be ASD markers. Tactile processing has been little explored due to lack of tools to asses it, however with the …