Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Computer Engineering

Integrating Mathematics And Educational Robotics: Simple Motion Planning, Ronald I. Greenberg, George K. Thiruvathukal, Sara T. Greenberg Apr 2019

Integrating Mathematics And Educational Robotics: Simple Motion Planning, Ronald I. Greenberg, George K. Thiruvathukal, Sara T. Greenberg

George K. Thiruvathukal

This paper shows how students can be guided to integrate elementary mathematical analyses with motion planning for typical educational robots. Rather than using calculus as in comprehensive works on motion planning, we show students can achieve interesting results using just simple linear regression tools and trigonometric analyses. Experiments with one robotics platform show that use of these tools can lead to passable navigation through dead reckoning even if students have limited experience with use of sensors, programming, and mathematics.


Work In Progress: Teaching Game Design And Robotics Together: A Natural Marriage Of Computing And Engineering Design In A First-Year Engineering Course, Adam R. Carberry, Ashish Amresh Apr 2018

Work In Progress: Teaching Game Design And Robotics Together: A Natural Marriage Of Computing And Engineering Design In A First-Year Engineering Course, Adam R. Carberry, Ashish Amresh

Ashish Amresh

The increased dependence on computer programming in engineering has made it essential for engineering students to learn about programming throughout their undergraduate education. In the same vein, computing students benefit when given an opportunity to learn more about engineering design and systematic thinking. This paper discusses how one college embedded computing and engineering into a combined first-year introductory course. The course fuses computing and engineering using game design and robotics as an offering for both cohorts of students to work together in a multidisciplinary environment. Over the course of the semester, students learn introductory computing and engineering design concepts by …


Pythagorean Combinations For Lego Robot Building., Ronald I. Greenberg Jan 2018

Pythagorean Combinations For Lego Robot Building., Ronald I. Greenberg

Ronald Greenberg

This paper provides tips for LEGO robot construction involving bracing or gear meshing along a diagonal using standard Botball kits.


Pythagorean Approximations For Lego: Merging Educational Robot Construction With Programming And Data Analysis, Ronald I. Greenberg Jan 2018

Pythagorean Approximations For Lego: Merging Educational Robot Construction With Programming And Data Analysis, Ronald I. Greenberg

Ronald Greenberg

Abstract. This paper can be used in two ways. It can provide reference information for incorporating diagonal elements (for bracing or gear meshing) in educational robots built from standard LEGO kits. Alternatively, it can be used as the basis for an assignment for high school or college students to recreate this information; in the process, students will exercise skills in both computer programming and data analysis. Using the paper in the second way can be an excellent integrative experience to add to an existing course; for example, the Exploring Computer Science high school curriculum concludes with the units “Introduction to …


Swarm Engineering, S. Kazadi '90 Mar 2017

Swarm Engineering, S. Kazadi '90

Sanza Kazadi

Swarm engineering is the natural evolution of the use of swarm-based techniques in the accomplishment of high level tasks using a number of simple robots. In this approach, one seeks not to generate a class of behaviors designed to accomplish a given global goal, as is the approach typically found in mainstream robotics. Once the class of behaviors has been understood and decided upon, specific behaviors designed to accomplish this goal may be generated that will complete the desired task without any concern about whether or not the final goal will actually be completed. As long as the generated behaviors …


Direction Of Slip Detection For A Biomimetic Tactile Sensor, Erik Engeberg, Morteza Vatani, Jae-Won Choi Apr 2015

Direction Of Slip Detection For A Biomimetic Tactile Sensor, Erik Engeberg, Morteza Vatani, Jae-Won Choi

Dr. Jae-Won Choi

A biomimetic tactile sensor (BTS) is developed from strips of electrically conductive carbon nanotubes (CNTs) mixed in a polymer matrix that is embedded within a flexible polyurethane shell. The mechanical compliance of the BTS is similar to the human fingertip. Experiments are performed which show that the BTS can be used to detect slip and the direction that slip occurs by examining the relative timing among force signals from adjacent strips of CNTs and the frequency content of the force signals. The BTS can also detect forces applied at distinct points on the surface of the BTS.


Distributed Tactical Surveillance With Atvs, John M. Dolan, Ashitey Trebi-Ollennu, Alvaro Soto, Pradeep K. Khosla Feb 2014

Distributed Tactical Surveillance With Atvs, John M. Dolan, Ashitey Trebi-Ollennu, Alvaro Soto, Pradeep K. Khosla

Pradeep K Khosla

In Carnegie Mellon University's CyberScout project, we are developing mobile robotic technologies that will extend the sphere of awareness and mobility of small military units while exploring issues of command and control, task decomposition, multi-agent collaboration, e±cient perception algorithms, and sensor fusion. This paper describes our work on robotic all-terrain vehicles (ATVs), one of several platforms within CyberScout. We have retrofitted two Polaris ATVs as mobile robotic surveillance and reconnaissance platforms. We describe the computing, sensing, and actuation infrastructure of these platforms, their current capabilities, and future research and applications.


The Application Of Traditional Tort Theory To Embodied Machine Intelligence, Curtis E.A. Karnow Jan 2013

The Application Of Traditional Tort Theory To Embodied Machine Intelligence, Curtis E.A. Karnow

Curtis E.A. Karnow

This note discusses the traditional tort theories of liability such as negligence and strict liability and suggests these are likely insufficient to impose liability on legal entities (people and companies) selling or employing autonomous robots. I provide the essential working definitions of ‘autonomous’ as well as the legal notion of ‘foreseeability’ which lies at the heart of tort liability. The note is not concerned with the policy, ethics, or other issues arising from the use of robots including armed and unarmed drones, because those, as I define them, are not currently autonomous, and do not implicate the legal issues I …


Adaptive Algorithms For Coverage Control And Space Partitioning In Mobile Robotic Networks, Jerome Le Ny, George J. Pappas Mar 2012

Adaptive Algorithms For Coverage Control And Space Partitioning In Mobile Robotic Networks, Jerome Le Ny, George J. Pappas

George J. Pappas

We consider deployment problems where a mobile robotic network must optimize its configuration in a distributed way in order to minimize a steady-state cost function that depends on the spatial distribution of certain probabilistic events of interest. Three classes of problems are discussed in detail: coverage control problems, spatial partitioning problems, and dynamic vehicle routing problems. Moreover, we assume that the event distribution is a priori unknown, and can only be progressively inferred from the observation of the location of the actual event occurrences. For each problem we present distributed stochastic gradient algorithms that optimize the performance objective. The stochastic …


Adaptive Robot Deployment Algorithms, Jerome Le Ny, George J. Pappas Mar 2012

Adaptive Robot Deployment Algorithms, Jerome Le Ny, George J. Pappas

George J. Pappas

In robot deployment problems, the fundamental issue is to optimize a steady state performance measure that depends on the spatial configuration of a group of robots. For static deployment problems, a classical way of designing high- level feedback motion planners is to implement a gradient descent scheme on a suitably chosen objective function. This can lead to computationally expensive deployment algorithms that may not be adaptive to uncertain dynamic environments. We address this challenge by showing that algorithms for a variety of deployment scenarios in stochastic environments and with noisy sensor measurements can be designed as stochastic gradient descent algorithms, …


Adaptive Algorithms For Coverage Control And Space Partitioning In Mobile Robotic Networks, Jerome Le Ny, George J. Pappas Mar 2012

Adaptive Algorithms For Coverage Control And Space Partitioning In Mobile Robotic Networks, Jerome Le Ny, George J. Pappas

George J. Pappas

We consider deployment problems where a mobile robotic network must optimize its configuration in a distributed way in order to minimize a steady-state cost function that depends on the spatial distribution of certain probabilistic events of interest. Three classes of problems are discussed in detail: coverage control problems, spatial partitioning problems, and dynamic vehicle routing problems. Moreover, we assume that the event distribution is a priori unknown, and can only be progressively inferred from the observation of the location of the actual event occurrences. For each problem we present distributed stochastic gradient algorithms that optimize the performance objective. The stochastic …


Adaptive Robot Deployment Algorithms, Jerome Le Ny, George J. Pappas Mar 2012

Adaptive Robot Deployment Algorithms, Jerome Le Ny, George J. Pappas

George J. Pappas

In robot deployment problems, the fundamental issue is to optimize a steady state performance measure that depends on the spatial configuration of a group of robots. For static deployment problems, a classical way of designing high- level feedback motion planners is to implement a gradient descent scheme on a suitably chosen objective function. This can lead to computationally expensive deployment algorithms that may not be adaptive to uncertain dynamic environments. We address this challenge by showing that algorithms for a variety of deployment scenarios in stochastic environments and with noisy sensor measurements can be designed as stochastic gradient descent algorithms, …


Adaptive Algorithms For Coverage Control And Space Partitioning In Mobile Robotic Networks, Jerome Le Ny, George J. Pappas Mar 2012

Adaptive Algorithms For Coverage Control And Space Partitioning In Mobile Robotic Networks, Jerome Le Ny, George J. Pappas

George J. Pappas

We consider deployment problems where a mobile robotic network must optimize its configuration in a distributed way in order to minimize a steady-state cost function that depends on the spatial distribution of certain probabilistic events of interest. Three classes of problems are discussed in detail: coverage control problems, spatial partitioning problems, and dynamic vehicle routing problems. Moreover, we assume that the event distribution is a priori unknown, and can only be progressively inferred from the observation of the location of the actual event occurrences. For each problem we present distributed stochastic gradient algorithms that optimize the performance objective. The stochastic …


Adaptive Robot Deployment Algorithms, Jerome Le Ny, George J. Pappas Mar 2012

Adaptive Robot Deployment Algorithms, Jerome Le Ny, George J. Pappas

George J. Pappas

In robot deployment problems, the fundamental issue is to optimize a steady state performance measure that depends on the spatial configuration of a group of robots. For static deployment problems, a classical way of designing high- level feedback motion planners is to implement a gradient descent scheme on a suitably chosen objective function. This can lead to computationally expensive deployment algorithms that may not be adaptive to uncertain dynamic environments. We address this challenge by showing that algorithms for a variety of deployment scenarios in stochastic environments and with noisy sensor measurements can be designed as stochastic gradient descent algorithms, …


Imirok: Real-Time Imitative Robotic Arm Control For Home Robot Applications, Heng-Tze Cheng, Zheng Sun, Pei Zhang Mar 2011

Imirok: Real-Time Imitative Robotic Arm Control For Home Robot Applications, Heng-Tze Cheng, Zheng Sun, Pei Zhang

Zheng Sun

Training home robots to behave like human can help people with their daily chores and repetitive tasks. In this paper, we present Imirok, a system to remotely control robotic arms by user motion using low-cost, off-the-shelf mobile devices and webcam. The motion tracking algorithm detects user motion in real-time, without classifier training or predefined action set. Experimental results show that the system achieves 90% precision and recall rate on motion detection with blank background, and is robust under the change of cluttered background and user-to-camera distance.


Safety Intelligence And Legal Machine Language: Do We Need Three Laws Of Robotics?, Chien Hsun Chen, Y. H. Weng, C. T. Sun Aug 2009

Safety Intelligence And Legal Machine Language: Do We Need Three Laws Of Robotics?, Chien Hsun Chen, Y. H. Weng, C. T. Sun

Chien Hsun Chen

In this chapter we will describe a legal framework for Next Generation Robots (NGRs) that has safety as its central focus. The framework is offered in response to the current lack of clarity regarding robot safety guidelines, despite the development and impending release of tens of thousands of robots into workplaces and homes around the world. We also describe our proposal for a safety intelligence (SI) concept that addresses issues associated with open texture risk for robots that will have a relatively high level of autonomy in their interactions with humans. Whereas Isaac Asimov’s Three Laws of Robotics are frequently …


Toward The Human-Robot Co-Existence Society: On Safety Intelligence For Next Generation Robots, Chien Hsun Chen, Y. H. Weng, C. T. Sun Jan 2009

Toward The Human-Robot Co-Existence Society: On Safety Intelligence For Next Generation Robots, Chien Hsun Chen, Y. H. Weng, C. T. Sun

Chien Hsun Chen

Technocrats from many developed countries, especially Japan and South Korea, are preparing for the human-robot co-existence society that they believe will emerge by 2030. Regulators are assuming that within the next two decades, robots will be capable of adapting to complex, unstructured environments and interacting with humans to assist with the performance of daily life tasks. Unlike heavily regulated industrial robots that toil in isolated settings, Next Generation Robots will have relative autonomy, which raises a number of safety issues that are the focus of this article. Our purpose is to describe a framework for a legal system focused on …